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XII. On StoxEs's Current Function.
By R. A. Samrson, B.4., Fellow of St. John's College, Cambridge.

Communicated by Professor GREENHILL, I'.R.S.

—

§ b Received November 24,—Read December 11, 1890.

oln |

o 5 In MaxweLys ¢ Electricity and Magnetism’* a view is put forward, in accordance
=0 with which we may regard any irrotational motion in a perfect liquid, for which the
=w

velocity potential is a solid zonal harmonic, as due to the juxtaposition at the origin,
and upon the axis of symmetry, of sinks and sources.

Buat, in a liquid, any irrotational motion which is symmetrical with respect to an
axis gives a velocity potential which may be expressed as a sum of a series of solid
zonal harmonics, their common axis being the axis of symmetry, and their origin
arbitrary, provided it is excluded from the region to which the expressions apply.
The position of the origin upon the axis is arbitrary, since, by a transference formula,
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we may pass {rom one origin to another.

Let us now consider the system formed by a line source and a line sink, of equal
strengths, extending along the axis from an arbitrary origin to infinity in opposite
directions. Such a system I shall call an extended doublet, of strength m, where m is
the strength per unit length of that part which lies on the positive side of the origin.

By the superposition of two extended doublets of equal but opposite strengths we
can produce a sink or a source upon the axis. Hence, in a liquid, any irrotational
motion which is symmetrical with respect to an axis may be produced by superposition
of extended doublets, whose origins depart but little from an arbitrary point on the
axis of symmetry.

Now, for an extended doublet of strength m, Strokes’s Current Function Y, for
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450 MR. R. A. SAMPSON ON STOKES’S CURRENT FUNCTION.

any point distant # from the origin, is — 2ms. For let { be the distance of the origin
of the doublet from the origin of coordinates, and let i (m, {) be the value of STOKES'S
Current Function for any point (=, 2).

Then if 8¢ be the Current Function for a source of strength 2m 8¢ at the point { of
the axis we get

1 d

1 d 2md¢

w78V = "0
Therefore

{
d(—e S = 2m — 3¢,
= 2m sin 0 8,

whence

Oy = — 2mdL cos 0,
the constant of integration being zero.
But
& = (m, {) + ¢ (—m, {+ 980),
and clearly,

Y (—m, {+ 8 = — (m, L+ 87).

Hence
¥ om0 = [ 0m, 0 + Y 01,
__ A mb
=—"" g SL,
= — 2md{ cos 0,
_ i—=8 .
= =2 G- O
Therefore :
W _ r—&
= e = b}
and
Y= —2mr . . . . . . . . .. (1
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MR. R. A. SAMPSON ON STOKES'S CURRENT FUNCTION. 451

where
r=/{=+(-=0%
disregarding a constant.
Thus, if
m = f(£) d¢,

we may, by properly choosing the function f, write
v=[/OviE+e—0tda. . . . ... @)

where i is the current function for any irrotational motion in a liquid, symmetrical
about the axis of 2.

Again, if
r={=+(z = )%,
ar_= dr_z—¢
de ~ 7’ dz "~ ¢
dr 1 _ = #r_1 (-0,
de® 8’ 2T g 7
Theretore
B2 et
de® ' dF T » e ’
1
= ; >
_1ar
T de’

and the expression (1), and consequently also (2) satisfies the differential equation

A @_Lg‘kzo Y )N

dw? dz? » dw

or, as I shall write it, Dy = 0.
When the motion is rotational, (8) no longer holds. In fact, as is well known, we
have under all circumstances

%Dl’l—"—‘—?w,

where o is the resultant spin at the point (=, 2).
Thus, if there is spin in the fluid, (3) is replaced by

A A N,
dmz,+dz2_mdw—_2ww e e e e (Ba).

3 M2
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452 MR. R. A. SAMPSON ON STOKES’S CURRENT FUNCTION.
Again, if v? stand for the operator

d? d? 1 d 1 a
i T T e T ot ip’

¢ being the azimuthal angle about the axis of symmetry, it may be seen at once that

— T efing
D"b_sincj)v S (4).
Consequently, (3¢) may be written
v? 1P-S;1:-l—d> = —20sin¢ . . . . . . . . (3d)

Consequently,

sin ¢'w’ da/ dy’ de/
B

l‘bzl‘b"_i‘2'7rsu;n¢).“‘.[ 7

where ¥, is a solution of (8), or, ¥ consists of a solution of (3), together with
w
27 sin. ¢
at any point, sin¢$ X the spin at that point. This result is given by Bassgr,
‘ Hydrodynamics,” vol. 2, § 306.
I give one other general result. Since

X the potential at the point considered of a distribution of mass of density

1.,
the circulation in any evanescible circuit drawn in a meridional plane is

wHiD\pdwdz, (9

where the integration extends over the area embraced by the circuit.

This result enables us to transform Dys readily from cylindrical to other systems of
coordinates. For instance, consider polar coordinates, r, 8, and let us find the circula-
tion in a small rectangle bounded by », » -+ dr, 6, 6 -+ d0.

Let the velocities in the direction of #, and perpendicular to it, be R, ©.
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Then the circulation in this circuit is

Rdr—l—{@fr—}—“(OT)dr}dﬁ—[R—l— ~~~~~ Jol’r—@vﬂdﬁ

. ® dR
= rdrd@{%—}- 7‘ - 7@]
Now
_ 1 dy
6= »sin @ dr
_ 1 4y
R= aneae’

Thus the expression in square brackets is

_ L [@y /ey 2
751110[ T3 <0Z92 oot 0-7g >:l

A sindd /1 dy
Dy = dr? 7 df \sin sin 0 d6>

_ P 1 dy
=S,

or,

if u stands for cos 0.
Other applications will be found later.
" Reverting now to the expression (1), it will be seen that the direct distance of any
point from a point on the axis of symmetry, plays the same part in the theory of
StorEs’'s Current Function that is played by its reciprocal in the theory of the potential
function belonging to symmetrical distributions of matter. _
Thas, if », 0, », @ be the coordinates of a point upon the axis, and of any other
point, the distance between these points, /(7> — 27,7 cos 0 4 %), may be developed
in a converged series, say

13

E: I, (cos0) or ! gw In (cos )
n= 7n=70

nl nl

according as 7, is greater or less than », I, (cos 0) being a certain function of 0, and
we see from (6) that

(1— )“W) nn—=DLE=0 . . . . . . (7

Now it is evident from the analogue of Zonal Harmonics, that it is proper to discuss
the function I, (cos ), and other solutions of (7) before considering the applications of
Stoxes’s Current Function to the motion of liquids. It is with this discussion that
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454 MR. R. A. SAMPSON ON STOKES'S CURRENT FUNCTION.

the first three chapters are occupied, and, as might be expected, the theory closely
resembles that of Spherical Harmonics. I have accordingly made free use of the order
and methods adopted by HEINE, in his ¢ Handbuch d. Kugelfunctionen,” more especially
in Chapters I. and II., where the necessary changes were slight. Moreover, the
functions I deal with have themselves been discussed by HEINE, on a different method,
and most of the expressions which I find in the following pages are given by him.
Full references to these are given on p. 461. -

The idea of developing the solutions of Dy = 0 in a manner more or less analogous
to that employed with regard to LAPLACE’S equation, appears to have been first used
by O. E. MeVER,* who obtains the equation (7), shows that the functions contain 1 — pu*
as a factor, and that they obey (224), Chapter II. An expression which shows the
relation of the functions to Zonal Harmonics was given by Mr. BurcHER,T and
functions of fractional order have been used by Mr. Hicks,} in connection with his
vesearches on the theory of the motion of vortex rings. The fuller account of
such functions, which is found in the following pages, may be of interest in relation to
these ; for example, T would refer to p. 44.

The applications to Hydrodynamics, which I here give, are of mathematical interest
rather than physical. They are chiefly in connection with the motion of viscous
liquids. In ¢ Crelle-Borchardt,” vol. 81, OBERBECK has given the velocities produced
in an infinite viscous liquid by the steady motion of an ellipsoid through it, in the
direction of one of its axes, and from these Mr. HermaN§ has found the equation
of a family of surfaces containing the stream-lines relative to the ellipsoid. In
Chapter VI., SToxes’s current function is obtained by a direct process for the flux
of a viscous liquid past a spheroid, and it is shown that the result differs only by a
constant multiple from the particular case of Mr. HErRMAN’S integral.

Some minor applications are also given ; namely, the solutions are obtained for flux
past an approximate sphere, and past an approximate spheroid. The solution is also
obtained for flux through a hyperboloid of one sheet, where it appears that the stream
surfaces are hyperboloids of the counfocal system. A particular case is that of flux
through a circular hole in a wall, and this is interesting, because we see that by
supposing internal friction to take place in the liquid, we find an expression which
gives zero velocity at the sharp edge, and thus avoids the difficulty which is always
present in the solution of such problems, on the supposition that the liquid is perfect.
A comparison may be instituted between this problem and that of the effect of a
disturbing periodic force upon a dynamical system capable of vibrating alone with a
period equal to that of the force. It is well known that the amplitude of the
vibration induced appears infinite, if we totally disregard friction, and this difficulty

* ¢ CRELLE,” vol. 73.

+ ¢London Math. Soc. Proc.,’” vol. 8, see p. 49.
i ¢Phil. Trans.,” 1884; 1885.

§ ¢ Quart. Journ. Math.,” 1889 (No. 92).
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is met by the fact that the damping effect of even slight friction is increased consider-
ably by high velocities. Now a viscous liquid can move irrotationally, and if there
were no friction at the boundaries this is the class of motion it would take in cases
of flux past or through obstacles. But if the obstacle terminated in a sharp edge,
this would make the velocity there infinite, and the friction, however inconsiderable
elsewhere, would here become of account. The boundary conditions which were
necessary for the existence of irrotational motion throughout the liquid would no
longer apply, and the whole character of the solution would be changed.

This would, at any rate, seem to apply to cases in which the whole motion is slow,
and when, consequently, the boundary conditions which must hold are pretty well
understood.

The paper concludes with an attempt to discuss the flux past a spheroid or through
a hyperboloid at whose boundary there may be slipping. The current function is not
obtained, all that appears being that it probably differs from the parallel case of the
sphere in being far more complicated than when there is no slipping. From this we
except the case of flux through a circular hole in a plane wall, when the solution for
no slipping satisfies the new conditions.

CraprrER 1.-—Vartous Forms oF I, ().

WHERE the method of development in the following pages does not necessarily differ
from that of HEiNE, I confine myself to a statement of result, with an indication of the
method, and a reference to the corresponding section in his ¢ Handbuch,” vol. 1. In
one place the reference is to FERRERS's ‘ Spherical Harmonics.’
Let R denote /(1 — 20 + mfz)
Then writing
R:—Ea”Iﬁ(’l") e e e e e e e e e (8)

we find

Vv 1.3...2n— " n(n-—-l) = nn—=0)m—=2)(n—3) _
Ln="35". [T cen=n T LG -85 © 4]

nom—3) n n
n= 1 —————— T ﬂ _—
B TOY TEk F( p Ty Tt h e I
II(n_——) n . " ‘
= 1 7= 2 — 3 nog
=2 T (—1% )‘T ( 1>F\\5+ 9 l‘—?, — N, X J
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456 MR. R. A. SAMPSON ON STOKES’S CURRENT FUNCTION.
7 even |
) |
::(—1)7?/2 2 . F< g,g-‘%:z,w>
211 <ﬁ> m(—1)
2 2
reo- (94)
nf3-4)
” 2 2 n 7
= —1 12 ]—IBZ)F<‘2‘+%,-—§+1,%,HJQ>
(G- J
n odd]
(s -1 |
— 9 ) ) )
=(—1De-2 = [ F(""'?,;"*“'%a 51 5 902\)
”(é"“‘)““‘ R
> . . (9B)
n
I (2 - 1) n .
=(_ 1)(71—])/2 - .’E(l ___%.,‘?,)F< __5 "3‘,%,-’1)2>
(s -4y
/ o

There are two exceptional cases, viz.,
L)=z; I(@)=—

The first eleven functions are given in Chapter IV., Table IL.  [Cf. HEINE, § 4.]

If : '
x=cosl, and E=u-— (a*—1)=¢",

and therefore

2 cos nf = & 4 £,

such a sign being given to the square root as shall make mod. £ } 1, and therefore
such a sign to 40 as shall make its real part, if not zero, negative, we have

II 2)
L(x) = ﬁ'—[—(')T(;z_l:I——(z—f“n (=L —n, —n+3% &) Wl
¢ (10)

II (n

Iﬂ(cosﬂ)——:gﬂiqg—n(_j)f" (1—52)9F(—=n+ 2,%,._7&_}—%’52)‘]]
In—3 9

zm[2cosn0 2(};;“57) 2 cos (n —2) 0
2n (2n — 2).1

S d.@n—3)@n—5 2esn—4)0

2n (2n — 2) 2n — 4).1.3
T 2.4.6(2n—3)(2n—5) (20— 1)

2‘eos (n—6)80.. j (L04)

n being in each case a positive integer, [HEINE, § 5.]
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We shall show (p. 471)

—n pl
I (z) = %j W= (1 — ) (u— EWdu . . . . . (11).
52
This form is equivalent to (10) when # is a positive integer.
Putting ‘
ay =1— /(1 — 2z + &%),
so that '

y=o+5("—1);
whence, by the help of LAGRANGE’S theorem,

1 [d\r=2 f2? — 1\»—1
L(e) = v @) <7-—> . [Hewns § 7] . (12).
The distance between two points whose coordinates are =, z; o, {; is

Via®+ (2 — 0%
= ry/(1 — 2zh + 1?),

where

e=cr, h=Ur, r=ye+);

whence, by TAvLOR'S theorem,

pn=1 (g
»

L (z) = (— 1)! m o [FerrErs, § 5] . . (13).
Hrine shews, §§ 8, 9, that
oo —1—acosny/(@® —1) /(1 — 2az + o)

provided mod. ay/a? — 1 < mod. (ax — 1), a result which is secured by taking «
small enough.
Hence
1 — ax — /(1 — 202 4 o)

1 3
= ;fodn[l — ax + ”

_ 1"’Td @ (1 — a® + a/2° — 1.cosm) — acos ny/2* — 1
o a(z —cosmpy/a? — 1) — 1

1—20&6&34—“2
2 —1 —ay/a* — 1.cosn

mJ

Let each expression be developed in ascending powers of «, and equate coefficients
of o
MDCCCXCI.—A. 3 N
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458 MR. R. A, SAMPSON ON STOKES'S CURRENT FUNCTION.
Then «
_lr 2 ) o 1\y—2 1
L(z)=_| (#* — 1)sin’y (z — cos pa/a® — 1y~2dn . . . (14),
_lr % 1) in? . S8 {)=n—1
= (@ — 1) sin® ¢ (@ + cos dva? — 1) dp . . (14a),
where

1= (z — cosny/a? — 1) (x 4 cos p/2* — 1) [HEINE, §9].

The form (144)is inadmissible when  is a pure imaginary ; for suppose the path of
integration of % to include real values only; then ¢ is complex and discontinuous,
passing at a step from 0 4 70 to 7 + 20,

The forms (14) and (14A) may be derived from (11) by substituting

u/é = x — cos p v/a? — 1.

From (14) we find a form analogous to one of MenLER'S forms for the Zonal
Harmonic.

Write
x =008 n ,/(2? — 1) = ¢,

where 6 will in general be complex, and we shall suppose its imaginary part to lie
between - uw.
Then
sin g 4/(® — 1) = /(— 1 + 2ae’ — )

if such a sign is given to the square root at the right as shall make its real part of
like sign into ,/(#* — L).
Thus
0
L(e)=2['d6 /{2 (&~ cosh O)) e, . . . . (13)
%

where
= \(® — 1) = b

x4 S(x? — 1) = N
Thus if = cosh 9, and the imaginary part of 9 lie between - 4,

O,= — 9, 0,=-+39,
and
L, (x) = %jisdﬁ V{2 (e — cosh )} |cosh (n — §) 0 4 sinh (n — &) 0]
= — —72;-[00511—1w0l9 V{2 (x = cosh )} cosh (n —4)6 . . . . (154),

0
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where sinh (cosh™lz) = — /(2> — 1), and the imaginary part of cosh™z lies
between + .
Write ¢ for 0

L(z) = —

7;_'[005 : dp /{2 (cos p — x)}cos (n — L)p . . . (15B),

0

where sin (cos™ x) = /(1 — %), and the real part of cos™ z lies between + .
Another form may be obtained when « is real and lies between 4 1, and n is a

positive integer, provided we make the same assumption that underlies the ordinary

process of finding DiricHLET’S forms for the Zonal Harmonic, viz. :—-

L@) =2 sin(n—1)¢r/i2( —cosd)jdp [Hmme §11] . (L5c).

cos™

We have (p. 453),
1, .
(1 — Q_d;c_g_”i) +n(n—1)1,(x) = 0.

From this equation we obtain the forms (9), (94), (9B), (10), directly.
Ist. Put

1
— il 2o .
L (x) = w2, « =73
then
d?z dz  m(m—1)
t(1—1t) 75 + [ —m— (3 —m)] w4 = 0 . . . (7a),
if
(m—mn)(m+n—1)=0;
of this
m 1 m 3
F<-—-‘2’" 5_‘5, 5—'77’2/, t)
is a solution.
2nd. Put
¥ =t;
g)ZQL, 1 t\ dl, n(n—1)-
tu—nw+@_§ﬂ+ﬁ4 L=0. . .. . (78),
of which
non 1 1
F<—-§: 5—53 '2" t)
is a solution.
3rd. Put
L =x2, o*=1t,
e (3 _ B\de  m(n—1) _ :
t(l—t)dtg-l—( — 2)(% =0 . . . .. (19,

3 N 2
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of which

is a solution.

4th. Put
E=uwv—J(@—1), L =28 t=4§&
Then
tl—t) I+ —(m+ 5 +52=0 . . . . ()
if
(m+n) (m—mn+1) = 0.
Of this

F(—4 m m+3 1)
is a solution.

From the differential equation (7), we may form a conception of I, (x), where n is
not restricted to integral values; the discussion is found in Chapter IIL, where
reasons are given for choosing (11), or its derived and equally general forms (14),
(15), (154), or (158) as the definition of I,(x). These are identical with (9), (10),
when 7 is a positive integer, and not otherwise.

I,(# 1)=0. This is obvious from (11). When = is a positive integer all the
roots of I, (x) = 0 are real, different, and lie between + 1, and excepting zero, occur
in pairs of the form +a. This may be seen from (12). [HEINE, §7.]

The sequence equation

m+1DL, () — @n—1)al,(x) + (n—2) L, () =0 . . (16)

connects three consecutive functions; this follows readily from (158); n is not neces-
sarily an integer.
We also find—a result required hereafter—

2?1, () = 8, Ly (@) + e Lu(2) + Ll (@) . . . . (17),
where
| 5 = @+DHE+2)
"= (- 1) @n + 1)
NP — 2 — 3
“=n+ 1) @2n-3)
(n—2)(n—3) .
O
exceptions,

We have for arbitrary n

‘ 2 [eos Tz cos (n + 5 ¢
Pule) = TJO W s g -}
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Whence, comparing with (158),
A1, ()
“'d"x— = Pﬂ_l (w) T (18).

Other relations, of use in transformations, may be introduced here

@n—-1)L,=P,—P,py . . . . . . . . . . (19)
LL=—P,+22P, ,—P,_, . . . . . . (20),

(1 —a?) %%C‘ =n—1al, —(n+1)L,,
=—nxl,+n—-2)L_, . . . . . . (21).

These hold without restriction upon n.
We see from (18) that
1.3...2n—3

L(w) =5, B,

where P, (x) is defined and discussed by Hmine (Chapter LII., §§ 80-83, and
Chapter IV.), who obtains equivalents of the following results :—(9), (10), in § 51 ;
(12) in §31; (14), (144) in §50. Also the following, which are proved below :—
(28), (32) in §51 ; (83) and equivalents of (84), (35) in §52; (22), (28) in § 62.

These might, therefore, have been assumed and the theory based upon them, but it
seemed preferable to indicate briefly the direct development.

- CmaprEr IT.—DrviropMexts v TERMS OF I ().
From equation (7) we find

+171, (») L, (#) al, (.7/') dL, (z)]*1 .
(m— ) (= 1) [ P g [ (@)@ 1, (@) WL (22).
Whence ‘

11, (2) L ()
{—l ]_ —_— w% d (22A):
when m = n, and neither of them is 0 or 1.
The limiting value of this integral when m = n is
1L, (%) L (2) 1 an ap,_y1tt 1 dal, 1+
f‘_l 1 — g2 dee = on—1 P”‘ =L dn |1~ 2n—1 !:dn P”"l]__ ’

Using (15B),
Do = 2[™ g sin (0 — §) o/ 12 (008 b — 2))} o

dn mJo
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This vanishes at the upper limit, and at the lower gives us

ERE

r;(ﬁ sin (n — L. 2 cos —3—5 . do.

Integrating, we get the required expression

_ P,y (=1), { 2 cos nar 2 sin nar . (2n — 1)}

2n — 1 win —1) n?(n — 1)

and when 7 is a positive integer

L@l 2
f_] R dw——n(n-ﬁl)(anl) Coe o (23).

Every member of the set of functions, I, (), Iy (), . . . I,(x) . . . , vanishes with
#+ 1and x — 1; besides, I, (x) has n — 2 real factors lying between these two ;
and any two members of the set obey (224). Now, if we have another function, ¢ (x),
also vanishing with  + 1 and « — 1, it has been shown™® that we can find a linear

function of the I’s, oQA,LL, (x), which shall be equal to ¢ (x) for all values of «
between 4+ 1and — 1, and

A= :olx. ¢ (2). L, ()/(1 — 2?) / [ : des. 1, (2) I, (2)/(1 — ).
Or,

_rsra(n—1)@n—1) [+ L, () L (2)
b =3 MEESE s e

where
¢(£1)=0, and 1>z>-—1

It is easy to prove that this development is unique ; I shall now show when it is
convergent.
From the sequence equation, (16), we find

(n+ 1)n(n— 1)[L, (x) L(y) = L () L. (9)]
—n(n—1)(n—2)[L(2) L., () — L) () L (y)]
=(x—y).n(n—1)(2n—1)1,(x) L (y)

from n = 2, onwards ; and, therefore, the sum of the series (24) to n terms is

+1 Lo@L @ —L@5Lg)
T R e

# ¢ Liouville,’ vol. 1. The method is quoted, substantially, by Lord RayiereH, ‘ Theory of Sound,’
vol. 1, ch. 6.
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Similarly, it may be shown that the sum of n terms of the development of f(z) in
Zonal Harmonics is

+1 —
_12_ [— ldyf(y) (’)’L + 1) Py (2) Py (?/5)0 = I;n @ Pus @) .

And it is shown by Heive (vol. 1, § 119), that the limit of this, when n is infinite is
the mean % { f(x + 0) 4 f(z — 0)}, provided f(x) is not a function with an infinite
number of maxima and minima.

Moreover, (HEINE, vol. 1, § 40), when n is very great

P, (z) = -8t

and it will be shown, (p. 476), when n is very great

(- g

2mrint ?

L (x) =

where § = & — /(x* — 1), as on p. 456.
Therefore, the two integrals above tend respectively to the same limits, as

(En)~" (1 — &)
27,.[ (]S( ) ,)7_1(1 2\&

L[ty )7 E (g
2_,77._( f(y)' gn—1 ;(1 — )

where = y — /(v — 1).
The limit of the second we know, and if we write

— A K
@) i)

F)y=¢)7 £

1—"1

the second reduces to the first. Therefore the limit of the first is the mean value of
& (x) at the point @, provided ¢ (x)/,/(1 — #?) is a finite function of #, which does not
possess an infinite number of maxima and minima.

‘We find the function
& T 4r— 1 n(n—2)...(n—2r42)
%+§+¢§112”(w) 2 (+2r—D@m+2r—3)...(n+1)

e AN+l =1 —=3)...(n =27 +1) .
+q-§112”+1(“) 2 @+ +2r—2)...(n+2) " ° (25)
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is one which is equal to #* when % is positive and to zero when x is negative, for all
values of n.
When 7 is a positive integer

1.2... - :
W= 2 27&71 n [(2% — 1)L, (x) + (20 — 5) 2n2"~1 Ty ()
2n — 1) 2n — 3
+ (20 — 9)(Ji-2%%i——) Tuut ... } (254),

whether x is positive or negative ; this equation is in fact an identity.

And if

F(#) = ¢y + ;¢ 4 c® + .
we may write
F(x) = byl (&) + 01, (x) + ey () + .. .,

where

_L2een (nt D +2)
- 1.3...277,—-3[0”-'_/ 2@n + 1) s

(m+1)(m+2)@®m+3) @ +4)
+ 2‘4.(277} + 1)(2”_{_3) WAd v e .jl. .o (25]3)

from n = 2, onwards, while

—by+0,=F(1); —by—0b =F(~—1) [Hemsg §16.]
We have

m . .
cos mb = cos ~~§ cos m (;—T -— 9> -+ sin —2: sin m G: — 0> ,

. . mm Ui mar . T
sin m@ = sin —cosm (= — O) — cos —smmm (= — 0);

2 2 2 2

and if cos 0 = x, we find

cosm(%— 0>
mm : m? m? . m? — 2%
=cos-2—[—— 10(x>—3-71—;“2_1-2--12(90)-;-7»m2_12.Wﬁgg~14(m)m...]
sinfm<7§r —H>
. m ) it — 12 m? 1%, m? — 3%
:-_-.s1n—2~[11(90)—~5-7m.13(90)--}—9°m2_~422'mzw42'15(90)~ . ] . (26).

When m is a positive integer
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o Zedo e 2m—2
CoS 1*'—"““—‘“—3

5 [(Zm — 1) L, (cos 6)

-1.2m —1

o g (2m = 5). T, _q (cos 0)

1.3.2m —~1.2m =3 i
N (mn — 9) L, _, (cos 0) + . R (264).

Where m is even, m?® occurs in the numerator; where m is odd, m is absent from
the denominator. [HriNg, § 19.]
We have, by (19)

P, (@) = (21— 1) T, (2) + Po_y () = @0 — 1) I, (2) + @0 — 5) L,y (2) + . ..

Hence, if we can effect the development

. : F () = Py () + /P, (x) + Py (x) + .
we can write , ‘ ,

F () = b I(x) 4 b1, (@) + b,T, () + .
where

b,,=(27z—1)(07,+_c¢,+2¥|—..'.). T .14 B

If we develop (1 — yx)/(y — ) in ascending powers of z, and then transform by
(258B), we get

11—y Ton=w ‘ o
y—s =2t 2l —=1)0n—1)H, @)L (@),
where , |
, o I (r—2)11 ) - n—1 =n _
H)=="Sntsy (P bk b o) @)

The convergency of this development is discussed on p. 476.

In future references to the expression H, (y) we shall not in general suppose # to
be a positive integer. On comparing it with the expression (9) for 1, (), it is seen
that the former may be derived from the latter by changing « into %, n into — n + 1,
and multiplying by a constant factor,

Since a similar change transforms

(1—9@2)124-%(%—1)/_0 into (1—-—j) +n(n-—1)z=0,

we see that H, (r) is a,nother solution of (7), a result at which we have already
arrived on p. 459,
There are two independent solutions to the equation (7), whatever the value of the
MDCCOXOL—A. 30
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independent variable ma,y be, but (28) ceases to be a permissible expression for one
of them when mod. 4* < 1.

For mod. %* = 1, the series is convergent, since (n — 1)/2 + n/2 — (n 4+ ) is
negative, and we have, by the well-known expression for the sum of a hyper-
geometric series of which the fourth element is unity,

H,()=— "= . . . . . . . . . (29)

The function H, (x) is of odd degree in & when 7 is even, and of even degree when
n is odd ; it vanishes when « is infinite. For #n =0 or 1 the given expression fails,
but if H is still a solution of (7), different from the corresponding I, we may put

H)(x) =x; H@=1. . . . . . . . (80

Certain functions which are not finite for all values of x between 4 1, may be

developed in a series involving H («) in place of I (z).
Thus '
1

et n(n-1)(2n_1)ﬂ,,()”?/) S (20 — H,t()‘”(‘/),

NMS

differentiate n — 2 times with respect to y, and then put y = 0, and we find

1.3...2n

gt = — 1.2.“%:23 [(27@ — 1)H,(z) — (Zn + 3) 2'}7, H,po(2)
— 1.2 1
+(@2n+7) l‘mﬂﬁ—i Hp0(2) = . } (31),
and if

F@)=cae ' e +cax™4...,
we may re-write it :
= b,H, () + b;Hy(2) + . . .,
where
1.3...2n — 6 n—2.0 = 3
1.2...n—2 [ n=1T Ty g g On-s

n—2mn—3n—4n—>5
+ 2.4.2n —3.2n — 5 Cimp = - » ] (31A),

provided the expansion should prove convergent. [HriNg, §21.]
A thorough discussion of the function H is given in the next chapter.
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Caarrer 1I1—Ox maE Funcrron H, (x).

The function H, () which, when mod. « is not less than 1, may be written

Hn(w)'—'"2_"H(nn(a2z)i1_(_2) WHF< RS *z) - (28),

may be identified in any expression, in which mod. = may be as great as we please, as
' 1
n(n—1)

that solution of (7), which vanishes when mod. z is infinite, and is equal to —

when x = 1.
Thus, reverting to the expressions of p. 460, we see that, introducing a constant
multiplier,

O —2)I1(3)

H, (a,) = - ”‘““m—“ f"—lF( ,m—1, n-{— é’g). o (32).

Again, by a well-known theorem

11 — 21 ! 3 DAY
(ﬁ(njl)( )F( %2, n—1,n -+ %’ 52) - ,(Ouﬂ_g(l — u);; (1 — ufﬁ), du.

Hence ‘
H, (z) = — &1 j u"‘g(l—-u)%(l-—ufg)%lu S (33),

a form which may be compared with (11).

In (82) and (83) no restriction is placed upen the value of x, and = is supposed to
be a real positive quantity, but not necessarily an integer.

From (33) we get a form analogous to (14).

For write ué = o — ,/(x* — 1) cosh ¢ ; this gives, on substitution,

H, (z) = — ﬁodgb (@ — 1) sinh® ¢ {2 — o/(® — 1) cosh $}*=% . . (34),

where

x+1ﬂ
1

by = log

The sign which we attach to the logarithm is immaterial; I shall take that sign
which makes the real part, if any, positive ; or, as we may write it,
¢y = 1log —— = log p — to,

p>1, and —%'n'<0'<—§—1r.

302
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In (34) write
(= /(2 — 1) cosh ¢) (z 4+ /(x* — 1) cosh ) = 1.
Substitute, and we get

! _ [ @—1)sinh*0d0 -
H, (x) = J’o (@ + /2 —1.coshgyrtt = = ¢ (35)

- In this expression, # may not be negative and greater than unity.
The expression (34) may be made to furnish us with another, on the model of
MenLer’s form for P, ().
For, write
o @ — /(x® — 1) cosh ¢ = ex.

V/(@* — 1) sinh ¢ = /(e* — 2xex + 1),

Then

where the square root on the right has such a sign that its real part is of like sign
with the real part of 4/(«? — 1) sinh ¢.
Thus

cosh =
H, (¢) = — L, , clY\/{‘?(coshx——r)}e(""‘%)x )

sinh (cosh™! &) = = /(¥ — 1).

where

" This expression corresponds to (15), p. 458; (15) and (36) may be differentiated
once with respect to x, but not twice.
We have, by p. 465, where 7 is a positive integer,

n=o : . 1 — gy 1—a

n(n—1)2n — 1) H,(y) L, (x) = +o=—— . . (87).

2 y—x y—a

Mt

Hence, multiplying by y — x,
— 21, () |
="3 0 (n—1) [(z%, — 1)y H () L) — B () (o + D Loy () = (0 —2) Ty (w)}],
since L : , o
(21’&» —DNeal(@=nr+DL @+ n=2)L_ () . . . (16).
Hence we get

(n+1)Hy () = (O —1) gH, (5) + (0 — D H,_ () =0 . . (38)

BH (y)——-SyH()—!—twO. Co. ... . (88a)
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A proof of (88) which is valid when % is not a positive integer, may be obtained
from (36).
From (38) it follows that

2’ H, (2) = 8,H, .5 (%) + e H, (2) + LH,._y(x) . . . . (39),
where 3, €, {, are the quantities so called on p. 460 ; with the following exceptions.

#*Hy () = 8H; () + Hy (2) — )
*H, () = 8,H, (v) + &,H, (x) — z coe e (39a)

I Q. () be the Zonal Harmonic of the second kiﬁd

Q. (%) = jzooqu {x — o/ (a* — 1) cosh ¢}" do,

where
- 41 P
$y=14log ™. [Herm,§36.]

From this may be derived, as on p. 458 for I,(z), the expression

cosh~1z elnt+3) .«udx
Q (2) = .{_w A/ {2(coshy — @)}

where sinh (cosh =1 2) = — / («* — 1).

Hence .
1H, - ' ,
: dx(m) Q.- 1( ) EE (40)»
and also
(‘Zn - 1)H, (m) Qu(x) = Queg(®) . . . . . . (41)
Again, as on p. 461, we find
H,(z) = — Q. (%) + 22Q.; (%) — Qu_p () . . . . . (42),
and .
o NTL( —
H, () = (’;H (Z __(L) 0. (2),

where O, (x) is deﬁned by HEINE, § 31.
By means of the sequence equatlons

(n + 1)1,,,_,1 (:c) (2% - l)wI,, (m) + (% —2)L_,(x)=0. . . (16)

(n+ 1)H,,, (x) — (271 - 1) «H, () + (n —2)H,_,(z)=0 . . (38)
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we see that
(43),

| I% (Q'/‘) = a}In_.r (x) - Bi‘In—r—l (w)
Hn (.’E) = arH-n-r (ZU) - B?‘Hﬂ—-f'—d (JJ)

where a,, B, are_rational functions of degrees r,  — 1 respectively in @. This holds
whether 7 is integral or not. If n is a positive integer, we have, taking regard to
the equations

315 (x) — 3zI, (o) =0

3H; (x) — 3zH,(x) +1=0

L(x) = a,_5l, (x) (434)
H, (%‘) = a}b—21-12 (:E) + 18/;-2 .
But by (34)
o 3 log (w+ 1)/(z—1) . ;
H, () = — J' s (2* — 1) sinh*¢. dp = 1, (x) 10g ij_l 9—3 . (444).
Hence we get the expression, # being a positive integer,
Ho (1) =L@ lg " =K@ . . . . . . (44,

where K, () is a rational integral function of «, of degree n— 1.
By substituting (44) in the equation (7)

(1 — ) -~~-+n(n—-l) u () — 0

we can obtain an expression for K, () in terms of the Is, viz.,

_TER2(20 —4r 4+ 1) (27 = 1) (n —7)
K., (w) =2 @r—1)(n—7) [1 - n(n—1) ] L (44]3)’

the series beginning with I; or I,. [HrIxE, § 26. ]

The expression (44), where the logarithm is defined on p. 467, might be taken as
the definition of H, (z) when n is a positive integer, without restriction upon x ; but
when « is real and less than unity, it is advisable to modify it ; viz., from (44) we get

’ 1+« X
3L, (2) log 5 iL — K, () & Z”;'r L, ().
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In this case, I take ; ~
H,(5)=3L @@ lg 2 —K(@) . . . . . . (440,

a form which, along with T, (), is capable of expressing any solution of (7).
The form (44) is easily derived from

1
Hn,(oo')::%j’+ w)d?/. Co o (44D),

- Y '

which itself follows directly from the development (37). [HeiNg, § 28.]
The two forms (33), (11), are simply transformations of the two solutions

1
Yy = Luﬁ“ (I = a)=*1(1 — tuw)du, B,y — B, positive

1

Yy = Fuﬂ—l (1 — u)y—B-—l (1 — tu)-"u olu, y — 18’ 1 — a, pOSitive
1

which, among others, JacoBr gives (‘ Crelle,” vol. 56) as solutions of

(=)Lt [y — (e B+ 1)L —apy =0,

See (7D) p. 460 ; m = n — 1 in the first,and = — nin thesecond. ¢ = ¢ and JAacosI
supposes it positive, but here that is not necessary.

Let us now coordinate the various solutions that have been obtained.

The different series used are only permissible expressions for the solutions of (7) so
long as they are convergent.

Now F («, B, y, ) is convergent,

when a -+ B — y is not positive, if mod. x < 1
when a 4+ B8 — y is negative, if mod. z } 1.
Hence
(9) (28) are permissible for mod. @ 4 1,
(94) (9B) are permissible for mod. « } 1,
(10) (82) whatever « may be.

Now, by direct development, we know, (8, y — B, positive),

1, - ey _T@E=DIy—B—1)
jouﬂlu-u)vﬂl(].-xu) du = S Fla 8,y,7).

Hence (33) =(32), and, therefore, = (31), when this last is a permissible expression,
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But (11) # (9), or (10), unless » is a positive integer. For (11) = (14) and from

L@ _
(14) Lt -1 %
I” (ﬂv) n=1 _E@_:%)_M i 3 7 LG WY A
) po1= " gn-p” T ET e Ty e
L (=) I (n — &) .
. e T 2 i a2 H —
(10) -1 II (n)n( —_ _1_) S F (2 M, 2, 2 ] - n, g )

But the series on the right are divergent for x = 1. Similarly (94) and (98) donot
agree with (11).
Taking the definitions (11) and (83) for I, (x) and H, (), we find

L) =erT,(—z) () =cdo-0H,(—2) . . . . (A)

r . 1 ' o
In(:l: 1)=0 n (:i: 1) = ""'7;(77/_1) e e e e s s (B)

ST Gn—HT ) Mn— TG . w
0= I 0 0= DD e —in) (0
xT" = 9u—1 __.__..__—_-_—II (7?/-—- %) ?1““1 j— _' —il HO?" 2) 1T ('— '1")
};t@az I (x)=2 Moo= mngm H, (x) = — 2 M=) (D)

Add to these, when 7 is a positive integer,

n odd Lio(x) _ . I (4n—1) 1
xI;to ; _Pyz-].(o)—(fl)( “n(un__)n(__z) | &
7, even L Ha () o (3 — 1) 11 () | ’
gito x Q-1 (0) = (= 1) [I(in —1%) J
[HEINE, §§ 4, 25.]

These results will be quotedas . . . . . . . . . . . . . . . (45)

We can now give the expression for H, (x) in ascending powers of @  For
the expressions (94) and (98) satisfy the equation (7), whether n is odd or even ; and
where I, (x) can be developed in even powers of x, H, (x) can be developed in
odd powers, and conversely. The constant factor is determined by (45) ; hence
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n even
m@pqwanﬁéﬁg@ﬂ%~g+%ggﬁ) L (28a),

n odd
HA@=(ﬁuWHﬂ”%Eéx”@F(nggéggwﬁ.. (288).

These apply when mod. # } 1; and only when n is integral ; for we see from (454)
that neither I, (x) nor H, () can be expanded in a series of integral powers of
« when # is not an integer.

Two functions, R,, T,, have been used by Mr. Hicks* in connection with his
researches on the motion of circular vortices, which are such that

4n? — 1

R, = = L,y (cosh u),

21
Tn = —_— @”r H”.{_% (COSh u).

Mr. Bassert employs a function L,, where
T\, 2
L(§) = (= 12 £ Houy (o),

and finds the sequence equation corresponding to (38), and the values of L, L, in
elliptic integrals.

Mr. Hicks gives equations which are equivalent to (18) and (40); approximate
expressions for the first five R’s and first four T’s in terms of &k = e~* (or, if we
write & = cosh u, k is the £ of p. 456) ; and an expression for T,, which leads to

mﬁwzﬁmw¢w@wmmme.....(m.

A proof of (46) will be given in the next chapter (p. 483); but I will here show that
it applies only when 7 is a positive integer.
For

Hypy(2) + Hooy () = 20H, ., (x) — 2/2 r cos 18 (€ — cos 6)! d6.
0

# ¢ Phil. Trans., 1884, 1885,
t ¢ Hydrodynamics,’ vol. 1, § 115.
MDCCCXCL.— A. 3p
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Now

T

24/2 f; cos nb (x — cos 0) df = [2‘7{3 sin nf (x — cos 49)%]0 -+ 237; {H, 4 () — H,_, (2)}.

Now, ¢f n s a positive integer, the expression in [ | vanishes at both limits, and
we find the sequence equation

(n 4 3) Hupy () — 202H, 3 (2) + (0 — §).Huy (@) =0 . . . (38).

We see from p. 470 that we may write

Liys (2) = el (2) — Bunnly (%)
Hyiy (@) = o, Hy (®) — B, H, (2),

where, n being a positive integer, a,_,, B,_, are rational integral functions of @ of
degrees n — 1, n — 2, respectively ; and I,, I,, H,, H, may be expressed in terms of
complete elliptic integrals of the first and second kinds.

For we have, by (144)

I (@) =

r (@® — 1) sin® 0 dd
o (& + /2 —1.cos O)?
r Vet —1.cos8db

o (@ + /22 — 1 cos )

1
by
2

—

I

Jio 3

o e kY m
."o{(m + cos 0 /0 — 1) = (# + cos Gx/m)%}ow’
and

. o0
2+ cos 0 \/(2* — 1):%{1 —_ k'zsmgé}

where
E?P=1— g 99

| S L@ =—2 [5—% E <k 'g) — o (F, ’-;)] L @)
Also, by (14)

L (#* — 1)sin® 60
o (@ + cos 64/2% — 1)}

r«/acz — 1 cos @ (4 cos 04/ — 1)} db,

0

m

L(z) =

and o
(#* —1) sin® = — V7 — 1cos O (x + +/2* — 1. cos 0)

4 x(@+ /a2~ 1.cos0) —1
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T (@)= = 31, (2) + 2 [ (@ + cos /i — 1)} dO
0

1 a9
- 'n-Jo (x + cos @ Va? — 1)}’

or

Ig(w)zégq—rl:mf‘%E@', g)—gF(k -"zfﬂ L. (7).

Also, using the results given by Mr. Basser (‘ Hydrodynamics,” vol. 1, p. 108), we
have

H@= 2eE(g])-eve@—nF(E F)
H (o) =—3[e0n(e J)-ev@-1F(E 3)]. . . )

The expressions (48) give very little new information about the functions H, since
we have already obtained in (32) the expression for H, (z) in an ascending series of
powers of £: but (47) throws some light on the difference between the forms (10)
and (11); for baving regard to the expressions (Caviey’s ‘Elliptic Functions,’
Chapter II1., §77),

12,52

F(yT= 8, 7)=log g+ 5 lg— 5|+ 5 & [loe s — 55 — 5|+ &

slvi=eg)rsiefoi i Hefui- 2

it is at once obvious that (11), which leads to (47) and (474), gives for I, (x) a function
of & which, in general, is not identical with (10).
We shall have to deal with infinite series into which I’s and H’s enter ; it is, there-

fore, reqqisite to know to what values these approximate when their order, n, becomes
infinite. We have, whether 7 is integral or fractional,

Hn(m)=-—11%"—(;{l§)<%>ga-w(%, n—1, n+% &) . . . (32),
whence
_ o \
Hy(z)=—=}§T. &7 1(1—% . . . . . . . (49),

when 7 is very great. [HEINE, §40.]
Again, .
L) =" e —wp—-de . . L (1)
T g
3p2
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Now, when n is very great, each element 2" (1 — u)* (v — £*)*du of the integral is
very small, except when u is nearly equal to 1; we may, therefore, put

(o) = N (1 ) du

K 0

when 7 is very great,

_ 1T}
T all(n+ )

g (1 — = 27(%‘:77) (L — &Y . .. (494)

The expressions (49) and (494) enable us to discuss the convergency of the develop-

ment
1 —_ wz W= w0

= % an—1)2n— 1) H,(y) L (). . . . . (37).

Yy — & o= 2

For, from the equations (16) and (38), we find

w

S (n— 1) (22— 1) (¢ — ) L () H, (9)
=1 =@+ — Dn+ 1) [L@E) Lo, @) — L @) L, ()]

Now the limit when n is very great of the expression in [ ] is
1 /9\» ) 1
wlef vo—e 1= (1-5)

Hence (37) is true so long as mod. y > mod. & | HRINE, § 45.]

CrAaPrTER [V.—Ox FUNCTIONS APPROPRIATE TO THE SPHEROID AND THE TORE,

We have seen in the introduction that the expression
¥ = (Ar" + Br—**1) {C1, (cos ¢) + D H, (cos 6)}
where A, B, C, D, and n are arbitrary, is a solution of
D=0 . . . . . . . . . . . (3)

and we shall find that solutions expressed in this manner are appropriate to the
discussion of questions of fluid motion, when the boundary is a sphere,
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In the present chapter I propose to develop solutions which shall be appropriate to
the spheroid and the tore.

Consider a spheroid whose centre 1s at the origin, and whose major axis, and axis
of symmetry coincide in the axis of z. Let the distance between the foci on the axis
of z be 2h. Then if ph, gh, be the major axes of the confocals to this spheroid which
pass through the point (=, 2), p? ¢® are the roots of the equation in \,

w? P

7&—-1+

[ 3]

= A

b=

So that
r=hpq . . . . . . . . . . . (50),
w=1th/(1 —p*. 1—¢%

where we shall suppose p? algebraically greater than ¢° and, by an arbitrary con-
vention, ¢ to change sign with z.
From (50) we find

9

. _ 2 do?
dw’ -+ dz* =" (¢* — p°) <1 (_l{?pz 1 _il gz> ;

whence the normal distance between the two spheroids p, p + dp, is

gVl

and between the hyperboloids ¢, ¢ + dg,
ri—4
" \/(l = _tz>

Now, reverting to the hydrodynamical origin of the subject, it is shown in the intro-
duction that — =~! D is the circulation per unit area for any closed curve drawn in

a meridional plane. Consider the small curve bounded by p, p + dp, q, ¢ + dq.

prdp grdy

The velocities in the directions of the outward-drawn normals are
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to p,

]

to ¢, }(51),
!
J

and the circulation in the circuit considered is
a P — ¢
+ | A/ =L dp dg,

- A=
Y P 1 A dpdg
T T 1= @ 1—p® At h

But this is equal to

2

Ly ¢ =P il
— L Dy 1_p2d]o.k/\/1_g2dg,

hence
]. dz dg )
D= — hz(pz_qz)[(l — P ‘651;‘!; — (1 —¢% -;L;:I o (6w,
and the equation
D=0 . . . . . . . . . . . (3
transforms into
N a2
(1—202)%—(1-—%)—3;’;:0 N €19

In obtaining the above I have supposed the ellipsoids and hyperboloids of revolu-
tion about their transverse axes; and, in this case, p, ¢ are the reciprocals of the
eccentricities of the generating curves. Hence, for ovary spheroid,

p lies between 1 on axis, co at infinity ;
q » 1, ,0 at plane of symmetry.

If we wish our equations to apply to planetary spheroids and hyperboloids of one
sheet, we must suppose — A? to be the square of the radius of the focal circle in the
plane of symmetry, and p, ¢ are equal to (¢’ — 1)*/e, where ¢ is the eccentricity of
the generating ellipse or hyperbola. '

Hence, for planetary spheroid,

p lies between 0 within ring of foci, sc0 at infinity, being everywhere a pure
imaginary,
q lies between 0 on plane of symmetry beyond focal circle, 1 on axis.

Hence, whether we divide up space by means of ovary spheroids and hyperboloids of
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two sheets, or by means of planetary spheroids and hyperboloids of one sheet, g is
real and lies between 0 and 1.
Hence, by p. 462, any function of the coordinates, which remains everywhere finite,

may be expressed by the series nEwI,, (9) f» (p) where n is a positive integer. If this
n =0

is a solution of (3) we find on substituting

L. [0 =M - 0h0)|=

u Mn

whence,
(=)L L= 1)) =0,

which is the equation (7).
Hence, any solution of (3) may be written

% L (9) [AuL (p) + B.H, (p)]

where 7 is a positive integer.

When n is a positive integer I, (p) I,(q) is a rational integral function of the
coordinates =, z, of degree n.

In the first place, let # be even. The product may be resolved into a series of
products, (p® — &?) (¢* — &*) where a is any root of I, (x) = 0.

And by (50),

o

(P =) (@ — o) = — 35,

A k) l:z% + w hz] ,

when o =1

h? o? 1—a
when o £ 1.
But by (9) we see that, if TI (2*) denotes the product of all the s,
1.2...n
o 2.
@) = fmm—tant Lo2n=3’
and

= =1 '02—1 2 -

Hence, when % is even,
: 1.2..n w2 22 =t 0
L) L@ = =g n 1 o3 o ™ < -2 h) - (52),

where all the roots occur in the product excepting a? = 1.
Similarly, when = is odd,

1.2..n 2o’

— . S 2
L) L) == 5 TTan 290 =3 g I ( 2 1 & h)

where, under the product, all the roots are included, excepting @ = 41 and & = 9,
the latter of which gives the term pgq, or z/h.
Now it is easy to see that, except for a constant factor, there is only one homo
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geneous rational function of the coordinates of positive degree » which satisfies (3).
For such a function in its most general form involves » 4 1 constants, and, when we

have operated upon it with = <c£;2 + g;) - (%; , we are left with a similar function of

degree » — 1, each of whose terms must vanish. This gives = linear equations
between the 2 4 1 constants, showing that one, and one only, is independent, and
that appears as an arbitrary factor.

Hence the r functions L (p) I, (¢), L_,(p) L._1 (¢), . . . must be equivalent to these
» homogeneous solutions of (8), and are therefore sufficient for expressing any rational
integral function of the coordinates of positive degree », which satisfies (3).

We shall require hereafter the solution of

@ P
cl;g‘(l—qg)%;\g;: w(P)ule) o (30),

(L —p%

where £, (p), $.(q) are linear functions of I, (p) and H, (p), L. (¢) and H,(g), and
m = n.

A particular integral is

AT AC) N
’ (n —m)(n +m — 1)

I shall now consider the functions which are appropriate to the tore.

Write ,
m+iz=ccotl1%7i§,
sinh 9 4+ ¢sin &
oy —emE - - ()
Then

w4 22 — 2zccot £ — 2 =0,

w® + 2° — 2=mc cothp 4+ ¢* = 0.

And if P be any point in a meridional plane, A, B two points in that plane sym-
metrically placed at distance ¢ on opposite sides of the axis of symmetry,
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o BT
[ AP’
¢ = APB.

Hence the surfaces represented by y == const. are tores, and those represented by
& = coust., the surfaces given by the intersection of two equal spheres.

We also find

9 9 2 .
da® + d2 = ¢ (cosh i — cos £)?

Hence the normal distance between the surfaces n, » + dr is

¢dn

coshy — cos £

i cdf
cosh  — cos &

and between &, £+ d§,

Thus the velocities in the directions of the outward-drawn normals to the surfaces

n, & are
coshiy — cos £ dyjr )
|

He= =
Lo (54),

g — . coshy —cosEdd

- cw dn J

and hence the circulation in the circuit formed by %, n + dn, & &+ d§,

g [H — _-A‘f___m-fJ dé dm + OZ)[—-— B mé} dé dn,

ag cosh  — cos cosh 7 — cos

S BN N 20 BRI

= {clf Lw dg} + i Lv czn} dg dy,
and we get Z s

7 /1 u R
Dy = — eoshy —cos P (L) 4 S| - @)
where
¢ sinh g

™ coshn — cos £
MDCCCXCL.—A. 3 Q
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If we write

= x/(coshn —cos & . . . . . . . . (55),

Tdy 1 N x sin & I
- ag égﬂl‘n} [(COSh n = 008 £) dg& 2 (coshn — cos f)"’} Ir (56)

1 dip 1 [ % x sinh n ]
— =t = ———|(cosh y — cos £)* -~ ~—
(cosh n £) in )

w dy ¢ sinh 7 2 (cosh  — cos &)

and we find
h'p —"cos ) [d? 1 :
Dy = — MmN 4 X o ¥ -3,
( — cos E)i [ d? o @ 3 .
—— cg_w[(_l.gz-—(l——az~)da:§+;1f}(w-cos§)a.z[; L (6o),
where
a == cosh 7,
and
D=0 . . . . . . . ... (8
transforms into
d?
d;’;——-(l——aﬂ) 4 N G 1)

where
x = ¥ (cosh y — cos &)

Now £, as it occurs in the equation (3c¢), is a real angle lying between 7 and 0.
Hence, any function, x, which satisfies (3¢), may be expressed, by FouRIER'S theorem,

in a series
Sf, (%) cos (n€ -+ a,),
where 7 is a positive integer. R
Substitute in (3¢), and we find

¥ — oos (f + )| (1 = ) 5 4 (0 = P fu(o)| =
whence
(1 — )dfﬂ(”)+(n+i)(n_—§)jn(x)_O N (4]
which shows that :
CSolx) = ALy (2) + B, (2),

n being a positive integer, and any solution of (3) may be written

v 1 .
‘# = m 3, cos (%5 + a‘n) [—A—n[n+% (m) + BNH?L-I-»} (Q'})] e . (57),
an expression identical, except as regards notation, with that given by Mr. Hicks.
(‘ Phil. Trans.,” 1884.)

We are now in a position to show how the expression given on p- 473 for H,,; (»)

may be derived. [Cf. Hicks, ¢ Phil. Trans.,” 1884. ]
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For v = /(&* 4 2?) is a solution of (3); and

ot g2 = OB s E
coshn — cos &

Hence we may write

0=

(2 4 cos &)t = cos (né + o) [AL, 1 (x) + BH, ., ()]

=

But it is clear that the left-hand member may be developed in cosines of multiples
of & and, therefore, a, = 0.
Hence

A, (2) 4+ BH, ., (2) = f—r(z cos né +/(x + cosf) dE.
Now, when & = o, the right-hand member vanishes. In fact, since
j: cos nécos” EdE = 0,
when n, r are positive integers and » < #, it is clear that the highest power occurring

on the right when the expression is developed in descending powers of x, is xz="*%,
Hence A, = 0. To find B,, put z = 1.

- _ g _ ( _ l)n-—l 1
Lcos ng /2 cos 2d§_ V2 (-3
But
H 1) == — !
7+ % ( - m)
therefore
Bﬂ — (:_D”
Vi

and

H,., (z) = (— 1)" fo cos néy/ {2 (x 4 cos £)} dé
=ﬁcosn§\/{2(w—cosf)}df Coe e oo (46),

where 7 is a positive integer, and x is real and > 1.

These functions have been employed by Mr. Hicks in the papers already referred
to; and, except for purely mathematical interest, it is chiefly in connection with the
theory of fluid-motion about a tore that functions of fractional order claim our notice.

Mr. Basser® has, however, employed the function L, = 7—27_ (— 1)y*e~"* H, 4 {cosh 7),

to find the current function for motion in an infinite liquid due to the rotation of an
infinite cylinder whose cross-section is a lemniscate.

# ¢ Hydrodynamics,” vol. 1, § 115.
3 q 2
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Any solution of (8), which consists exclusively of positive integral powers of the co-
ordinates =, %, can be written in the form

! IE‘, B,H, ; (%) cos (n€ + a,).

(x — cosg‘:)'5 neo
To arrive at this theorem we notice that

d
% g

(x — cos &)} ==z (v — cosé).
But
1 o d
2—% —W/Zi—l-(w»—/%——l)dz,

hence we see that

2 () (0 = o 0 = U, (o — cos £,

where U, is a rational integral function of =, z, of degree », and consecutive functions
U,, U,,, are connected by the relation

Uppr = - 202+ (o =2 — 1) 0 42U,
and U, = 1. "
Forming the first five functions, we have
U, =z,
Uy=w"—1,
U, = 2(~ 3> — 1),
U, = — 8" + 120% + 2a® + 1,

U, == 2 (455 — 60w%® — 30m" — 1).

From these it is clear that when » is odd, 2z is a factor of U, ; but that, otherwise,
U, is an even function of the coordinates, =, 2, — @ occurring in higher power than z.

Now

(z — cos £ = Y %r H,, , () cos né.
n=0
Therefore,
1 N=0 2 »
U= b T ) oo (6477

and therefore ¢y = U, is a solution of (3). But there are only » rational functions of
the coordinates of positive integral degree not greater than r, which satisfy (3), and
which are independent. Hence, in terms of the functions, U,, U,_;, &c., we can
express any such solution of (3); whence we obtain the theorem stated at the
beginning of this section, and we see that B, is a rational integral function of n, of
the same degree in 7 as the solution of (3) is in the coordinates, =, 2.
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TaBLE I.—Functions of = and z of Positive Degree satisfying

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Py Py 1dy

dw? dz? = dw

= (422 — =),
2w (427 — 3w,

= (824 — 12=%° + =*).

e (82 — 202%° + Hwt).

o? (6425 — 2407'w° 4 1202%* — 5am).

2e” (6428 — 33624 + 2802%m* — 35=°).

w° (1282° — 8962%=° + 11202'=" — 2802%° -+ 7=°).

The above were calculated from the formula

dU,_,
T

U, =(2n—38)2U,_; — (& + 2% -

which may be readily deduced from (13).

n == 0.

10.

TasrLe IL—I, (z) in powers of .

—1.
€.
-1

2
il

2
bt — 62? + 1

8
T2 — 102° 4 3
8
21a% — 35a* + 1522 — 1 )
16
3327 — 652° + 35z — b .
16
42928 — 92448 4 630x* — 1402 + 5 )
128
7152 -= 171627 + 13862° — 4204° + 35z .
128 -
243120 — 643528 + 600628 — 23102% + 3152 — 7 .
256
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Tasre IIT.—K, () in powers of .

P et — Bt + 4 — 0
L f0 - 3o 4 A — Mt
LT — A4+ 10t — 430000 A
10 ; 22%%;; ) — 8348347 vl -+ 2176107 a2 — 4839667 a3 +
These were calculated from the sequence equations (38), (384).
nK, (x) = (2n — 8) zK,_, (x) — (n — 3) K, _, (»),
3K, (x) = 32K, (x) — 1.

5
30563
80460 L

TaBLe IV.—a" in terms of I (x)’s.

n= 0; — I,

1; 1.

2 21, — I,

3; 21, + I,

4; L+ L -1,

5; L+ 2L+ 1

6; HL+sL+%L—1

73 L+ L+ 5L 41

8; L+ SL+5EL+8L—1,

9; WL+ HL+ABL+EL+L

10; sisr Lo+ a3t L+ 3 L+ L+ L -1,
TaBLe V.—Cos (n cos™' @) in terms of I (x)’s.

n= 0; —1I,

1; L.

2; 41, — 1,

33 81, + I,

4; SAT, 4181, — 1,

5; L8, 442, + 1,

6; S L+ L+ R L —

75 BBRL+AYELAYL 4T

8; L+ L+ A L+t — L

9; L+ L+ EL 4+ 4L+ 1L

10; l%%.g_{_z I]O + ‘1‘%%”89‘%9' Is L’:—%gg Iy + 342_2_(%’13. L{ + “ﬁOIQ - IO‘
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TaBLE VI.—Various Forms of I, (x).

S s ) n 7 .
on—1 _-N" 2/ .o _n __n T 3 9
T mmu(-pn° F( ST RS- S B > c e (9)

A %;ﬁ) L. (94)
2I]I(—2->H(——J§)

n
II(—-—I
- 9 W n
(— 1)ie=D - ) xF (_5_{_%’5,%,302) .« . (9B)
H<w—l>H(—l)
9 2 2

ﬁ%{gﬁﬁ% . [COS (ncos™ta) — fﬁ_(é_sﬁ:?scos (n — 2 cos™la) — .. jl . (104)
1 (n—3) w1 .

sty b = =t 5 &) .. (10)

Er ey e
7 Lzu 21— (u—Erdu . . . . . (11)

1 A\*—=2 /22 — 1\2—1
lEIQi‘«'i) ( 2“> e e e e (12)

g 1“ iznza

(— 1)¢‘"‘1-—@- gp . (13)
2 —
- L sin?y (2 — 1) (¥ — cosp vVa* — 1)* 2 dn . (14)

%f:Sil]_g ¢,(332 —_— ]_)(m + cos ¢ «/mz — 1)—7&—1 d(]S L (14A)

_._l-r%h—]w de \/{2(.70 —cosh ¢)ye=ve . . | (15)

T J —cosh —1z

E TN

("™ ap /(2 (cos g =)} cos(n—B)$ . . . (159)

<0

2

N /e sne—de - . (190
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Tasrs VIL—Various Forms of H, (x).

5 —1
L (A RS B

> mF(——é—-{——é—,g,%,wg). .. . (28a)

(s 1
X +1>H<2 2>H(2 i w11 e 92Q
(— 1wl 22 L F(— 905 T gs @ X .. (288)

__H(%—-Zi)vl'l(%)_gn*lF(—-%,n~—--1,’n+%,fg). .. (32)

Tne-b
Al .
— éi'n-l J yr =2 (]_ — u)é (l — u§2>% duv . . . . . (33)

0

log (x + )/(x — 1) ’ I
[ dep (2* — 1) sinh? ¢ (x — +/a* — 1 cosh ¢)*=2 . (34)

0

- jo df (z* — 1) sinh® @ (x 4+ +/2® — 1 cosh §)™»=+. . . (35)

cosh— 12
— [ g /12 cosh p— )} et L (36)

—

[ lIumloz'erl—»Knac e e e oo (44
3 ¢

1

L1 ()log  t =K, @) . . ... .. . (440)
T e
L. (y)
%I_lwiﬁzjdy Ce e (44D)
[(cos(r—14)0/12(@—cosO)1do . . . . . (6)
~ 0

(9), (94), (98), (10), (104), (12), (18), (15¢), (284), (288), (44), (44c), and (44D)
require 7 to be positive integer. (46) requires n of form wnteger 4+ L. (9A) and
(284) n even; (9B) and (28B) n odd. (284), (28B), mod. = } 1. (15¢)and (44c)
x real and < 1. (28) mod. = 4 1. (46) = real and > 1. (14A) = not a pure
imaginary. (85) = not real, negative, and > 1. Subject to these limitations,
the above forms give the same values, with the exception of (44c) among the
functions H.
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CHAPTER V.—IrroTATIONAL MotioN 1IN HyDRODYNAMICS.

The chief interest attaching to StokEs’s Current Function lies in its application
where the motion is rotational, and, consequently, where the Velocity Potential fails us.
But it is never without value, since the equation y = const. gives the stream surfaces.
Moreover, methods are best illustrated by their simpler applications, and the results
serve for comparison with more complicated cases. Accordingly, in this chapter I
find the value of ¢ for certain known cases of liquid motion.

The problems we can attack with STorES’S Current Function are those of motion
symmetrical with respect to an axis, and this requires that the boundaries shall be
symmetrical. The boundaries may, therefore, be such surfaces as a sphere, a tore, a
hyperboloid of revolution of one sheet. We may suppose the boundary and the
liquid at infinity, either at rest or in motion, symmetrically. When the liquid at
infinity is in motion, I shall suppose its motion uniform ; and we may then reduce any
of the cases within this range to the problem of flux past a fixed obstacle, of liquid
moving uniformly at infinity.

The motion being irrotational, we have Dy = 0, and consequently ¢ consists of a.
series of terms such as we have found as solutions of (3) in the foregoing chapters.
If these are expressed as functions of the coordinates =, 2, it is easy to see that the
only positive power of the coordinates that can occur is =*; for any higher power
would make the velocity infinite at infinity, and the term z would make it infinite at
the axis. This immediately strikes out various terms. For example,

rcos@; 7315 (cosB); »I,(cosb), &e., and I, (p)I,(¢), I (p)I;(q) ... by p. 479.

Our process is, then, to assume a value for ¥ which contains a complete series of
terms, omitting these impossible ones. The mode of expression that is appropriate
differs with the form of boundary. We then use the principle that ¢ = const. is a
stream surface, and may, therefore, be made to represent the surface of the obstacle;
while at infinity y = — 4 V=? where V is the velocity there from right to left.

1. Fuxed Spherical Obstacle.
We may assume

Yy=A + Beosf + <07"2 + ?\) I, (cos 6) + %13 (cos 0) +, &e.,

the centre being the origin.

Then, if o is the radius, B=E=...=0, and
Ca? 4 2 = 0.
But .
1y(cos 0) = — '% .

“
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Hence

Il

5 @\ o .
" V</,«~_;> 1, (cos 0)

ad

:—%V(aﬂmﬁsing() N 1) 8

2. Spherowdal Obstacle.

= A+ [BI,(p) + CH,(p)] L, (¢
+ [DL (p) + EH, (p)] 1, ()
+ [FL, (p) + GH, (p)] L, (9)
+ KL (p)+ LH; (p)] Ly +. .. - . . . . (B9).

Assume

Putting D, K, &c., zero, in accordance with p. 489, the first terms become
B — Cp + lig,
Ho(p)=p. Hi(p)=1

Of these the term Cp must be excluded ; for referring to Chapter I'V., p. 478, we see
that the velocities normal to the surfaces p, ¢, are

since

p= L fi= ¥

haw pE—q° df]

—_ 1 1—pdy
Q - hos q2 e Z}Q (‘][) : ‘ * : ‘ J . . (5]).

Hence the presence of this term would make ) infinite at the axis, where
0 =w=1h,(1—p".1-—q%.

These expressions, in fact, tell us that where we may have 1 — ¢* = 0, the terms
of ¢ that involve p, must contain the factor 1 — ¢% and wice versd. The loci to
which these values correspond are given on p. 478. They are, namely, for

Ovary spheroid and hyperbolovd of two sheets :—~
p=1onaxis; o at infinity.
g=1onaxis; 0 at plane of symmetry.
Planetary spheroid and hyperboloid of one sheet :—
p = 0 within ving of foci; ¢co at infinity.
g =1 on axis : 0 on plane of symmetry beyond focal circle,
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From these we see, too, that p is the member that becomes infinite, and hence,
whether it occurs in the term I, (p) I, (¢) or not, or whether ¢ is a solution of Dy =0
or not, no higher positive power of p than the second can occur in .

Thus, in the region outside a spheroidal obstacle, we may have

Y= A+ Eq + [FL(p) + GH,(p)] L, (9) + LH; (p) I; (¢) + . -

giving
E=L=...=0,
. . I, (p) o, (p)

where p, is the parameter of the spheroidal obstacle.
When p, is very small, that is to say, when the obstacle approximates to a disc,

b= 2VA* T, (q) {[ (p) + -,H_e(r)}

2P0

a form which shows that the velocity becomes infinite at the edge of a disc.
A solution will be given hereafter, namely, on the supposition that the liquid is
viscous, and the motion slow, which makes the velocity zero at the edge. See p. 504.

3. Within a Hyperboloid.

Let us consider the motion within a hyperboloid of one sheet, g, let us say. The
velocity cannot, of course, be finite at infinity, and V will here denote its value at the
centre ot the hyperboloid.

We may assume

Y= A + Eg + GHy (p) I, (¢) + LH; (p) L (). - -,
and we find that all the coefficients must vanish except A and E; giving

b=Vh¢ . . . . . . . . . . (61)

It is easy to see that if we attempt to proceed to the case of flux through a circular
hole in a wall, we find an infinite velocity at the edge. See p. 509.

4. The Obstacle o Tore.

The solution in this case, and in terms of the functions which I have been dis-
cussing in this paper, has been given by Mr. Hicks (¢ Phil. Trans.,” 1884), who also
3R 2
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considers the eyclic motion which can take place. No useful purpose would be served
by quoting here Mr. Hicks’s results. I shall, therefore, confine myself to proving
rigorously a point which he assumes, namely, that in the expression of the current
function due to the motion of a tore through a liquid at rest at infinity, in the form
(57), the functions H do not enter.
This is deserving of some notice, since it is no longer true when the hquld at
infinity is in motion.
Assuming (p. 482)
1
b= (73 — C08 ’,;‘)*

E AL (@) + BH, @ cos (i + @) . . (57),

the condition that the velocity should be continuous requires dyi/dé = 0 at the axis,
u.¢., where z = 1.

Now I,,;(1) = 0. This condition, therefore, gives us no information as to how
the functions I enter the expression. But it shows that if

x = 2B,H, ., (%) cos (né + a,),
then
2(1 — cosf)f% — xsin § = 0,
when
x=1,
for all values of &

In the first place, omit o,
We find

2(1 — cos £). 0 — sin §BH,

— 2(1 — cos £) B/ H, sin ¢ — sin B H, cos £

+...

— 2(1 — cos £) B,H, ;7 sin n€ — sin éB,H,,, cos né
+ &ec., ad. wmf. =0,

the argument 1 being understood in the functions H.
Hence equating to zero the coeflicient of sin n¢,

(2“ - 3) Bu—lHu-—% - 4n’B/ZH1L+% + (27’?, + S)B/L+1I_Iﬂ+:} = O:

with one exception, viz.,
-_ 2B0H% _— 4:B1H§ + 5B2H§ = Oo
But
H”+%(]‘) e _} . . . . . . . . (4.5B),

ne —
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whence ,
—B,+B,_ B.—B., B —2B
on+1 — 2—1 T 3

Whence B, = 2B, + Bn? where B, 8 are arbitrary.

Similarly, if we suppbsed x to consist of terms B’, H,,; (x)sin né, we should find
B, = 0, B, = 0, and, therefore, the whole series B',, = 0.

Hence, if the functions H occur in i, they must be in the form of the series

1
(xz — cos &)

+ B[H; (x) cos ¢ + 2°H, (x) cos 2§ + . . ]} ,

{a[—éﬂ%(m) + H, () cos & + H, () cos 26 + . . .]

that is, by p. 484,
o+ :15,3 (= — 1).

The constant term, a — wB/4, is irrelevant; the term wB/4=* implies a finite
velocity at infinity, viz, #8/2, from left to right.

CuAPTER VI.—RoraTioNanL MoTION.

Among the problems on rotational motion in liquids, those are probably of most
interest in which the circumstances most closely resemble nature, those, namely, in
which the spin is due to the internal friction of the liquid. Certain cases of rotational
motion in perfect fluids have been discussed by Mr. Hicks (¢ Phil. Trans.,” 1885), in
connection with the theory of the motion of vortex rings, in terms of the functions
I have before alluded to (p. 473). I confine myself, in the present chapter, to the
consideration of certain cases of motion in viscous liquid.

When the motion in a viscous liquid is slow, the equations may be reduced to the
forms, (Basser, ¢ Hydrodynamics,” § 473)

%=vv2§; %=vv%; g—f=vvgl;
where & =, { are the components of spin parallel to fixed axes, and v = p/p, the
kinematic coefficient of viscosity. If the motion is symmetrical about the axis of z,
we may put { =0, { = — wsin ¢, 7 = o cos ¢, where o = — 1/2= Dy is the
resultant spin, and ¢ is an azimuthal angle measured about the axis of z. But we
have seen, in the introduction (p. 452), that

sin ¢

w

DV=veily . (4);
[0}
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write 2w for V, and we get

D = i— (% D,

STorES's well-known equation. (‘ Cambridge Phil. Trans.,” vol. 9, Pt. 2.)
Hence when the motion is steady, y is a solution of

D¥=0. . . . . . . . . . . (3d).
Or we may assume
Dy=V }
where b (3¢)
DV=0o0 J> '

so that ¢ consists of a function of the form of V, together with a particular integral
of (3e).
When the boundary is a symmetrical obstacle, the conditions which must he
fulfilled there are :—
(1) The velocity normal to the obstacle shall be zero.
(2) The tangential velocity shall be proportional to the stress in the same
direction, per unit area, across the surface of the obstacle.

Now if u, v, w are the velocities at any point parallel to fixed rectangular axes,
whose origin is at the point, and if P, Q, R, S, T, U denote the stresses per unit area
in the fluid, at the point, in the usual manner, as illustrated by the accompanying
figure, then, it is known (see Basser,  Hydrodynamics,” vol. 2, p. 242)

P:—p—%pﬁ—{-ZMLi—;;':—-]j—%—iLﬁ-l—Z#e

dv
Q= —p—5u0 + 2z = —p—3u0 + 2/
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du :
R=—p—3pf+ 27 = —p = 3u0 + 2y

(427

dw  dv
w <d—y + z> = 2pet

d d
T=‘u,<dq:' +:§;>=2pl)

Il

S

where

g + zi— (iz . . . . . . . . . (62).

I will now write these in terms of «, B, y, the parameters of three orthogonal

surfaces, whose intersection may be a convenient determination of the point.
Let
da® + dy® + d2? = A’da® + BdB? + C3dy~

Then, if 8y, 0,, 0, are the angles through which the normals at «, 8, y to the three
surfaces must be rotated about themselves to make them parallel to the normals at

a + da, B84 dB, y+ dy, it is not hard to see

B A v
03 = Xcia; dB _— EZE de .« . . . . . L. (63),

with corresponding expressions for @, #,, For, in passing from P to b, along the

normal to the surface B, the normal to the surface a is rotated through the small

angle ebd, or :Z%‘ dp, and, in passing from b to d, it is rotated through the angle ead

s

Bag da, in the negative sense.

or
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But the changs in u, the velocity parallel to the normal at e, B, y to the surface «,
as we pass from «, 8, v to a 4 da, B+ dB, v+ dy, is

du du

cl + le,8+—dy—@9 + wb,

v dA W dA du v dB du w dC
=@l 45+ ol - Ral+ e - KA

Hence we get
1[dw . vdA | wdA

e=z[g;+gdg+6m]

1 dv 1 dw w dC v dB
= S ™ BA s Be s e 4
20 =G0 T B T BCag T BC dy (64),

with four others, which may be written down from symmetry.

These enable us to express the second boundary condition (p. 494) in terms of any
coordinates which we may wish to employ.

Let us consider the solution of (3e) in terms of the coordinates », 0.

We may assume, p. 489,

V="3 (A + Bar—"*1)1, (cos 0),
=0
and

d? 1—p? d?

”
where p = cos 0.
Hence we require a particular integral of the equation,

A, 1
Ci:{;.___n(n )llln—— A,)71__|_B,r—7z+1

Clearly

Am.n +9 B,ﬂ“_ n+3

= e )

is a solution.
Hence, a particular integral of (3e) is, changing the arbitrary constants,

"= @

Y= 3 (A" + Br=**2) I, (cos 0),
=0
and, omitting terms, which, by the expressions (p. 453),

1 _d¥
R= Psin @ do
1y

iy it

T pgind de
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may be seen to give infinite velocities, we may write as a value of i, capable of
expressing any slow, steady motion in a region of viscous liquid from which the
origin is excluded,

Y = Dy cos 0 4 (Cyr? + Dyr—! + Byr) I, (cos 0)
4+ (D=t 4 B8 I, (cos®) . . . . (65).
w=3

An expression equivalent to this is given by Mr. BurcHER (‘ London Math. Soc.
Proc.,” vol. 8).

In terms of the coordinates », #, I shall consider two cases of motion, viz, (1)
when the obstacle is a sphere, (2) when it departs little from sphericity. When
there is no slipping, the boundary conditions are R =0, ® = 0; when there is
slipping the conditions that hold at the boundary are not easily expressed in the
second case; in its discussion I shall, therefore, confine myself to the supposition
that the velocity at the boundary is zero.

1. The Obstacle a Sphere.
We find from (64)
iR, d® _©

2¢ = — —,

rdf dar r

R=0,
dR e 0
M (5»—0 ar 'r> B®,
or, written in terms of i,
i _
g
P s Ay _ B ¥
—_ (1 — )Y 4 e %Y oY B a0V
( F')d2+7 r? '27d'r ,u,,rdr

where @ is a constant, which is infinite if there is no slipping, and u = cos 6.
But

d2
= (@ =) g L) =n(n — 1)L (u).
Hence the above conditions require D, = B, = 0, except when n = 2, in which case

we have

Cya® 4+ Dya™! + Bya = 0,
2C,a® — Dya~1 <1 + %%) + Byo = 0.

MDCCCXCL ~—-A. 3 s
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These give ~ '4 -
=0 P—a 5
_ 2<1+5;> _5

It is clear that C, =V, the velocity from right to left at infinity.

Pagsing from this well-known result, which is here given for reference and illustra-
tion, let us consider the motion about an approximately spherical, symmetrical
obstacle, at whose surface no slipping takes place.

Let » =a[l 4 f(f)] be the equation of the surface, and let f(f) be developed by
Chapter II. into the form Sa,I, (cos 8).
~ Let us consider the surface

r==o [l "I"‘ oy Iw. (COS 0)]’

Iy(cos @) . . . . . (66).

where we shall suppose @, so small that its square may be neglected.

We must have @ =0, d\z =0 in (65) when » = a[1 + e, I, (cos #)] ; and since the

motion will not be far different from that in the case when the surface is a perfect
sphere, all the cofficients which occur are of the order of a,, excepting C,, D,, B,, and,
therefore, except where these coefficients enter, we may disregard the departure from
a spherical form. We find, omitting the argument cos @, and writing D’,, B, for
D,a=#*1, B,a=**3 respectively,

c& W [(2Ca* — Dya~t + Bya) + a, I, (2C,0° 4 2D,a)] 1,

. +3[=(—1)D,—(r—3)B,]L

B [(C0* 4 Dy 4+ Bya) + @, 1, (20502 — Dya=1 4 Bya)] cos 0

d (cos 0)
+ 3[D', + B,]P,_,
= 0.

Hence
Cya? + Dy ™! + By = 0,

2C0* — Dya=1 4 Bya = 0.
Making use of these results we find

S [D,+ B, P,y =0;
whence
D,+B,=0
for all values of 7, and
—a,1, 2B, 4+ 528, 1, = 0.
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But

O n
I Iz———Z' ¢;+2+ Iﬁ+§ In-—-

where 8,, ¢,, {, are given by (17), p. 460.

Therefore
S,
Bty =Byoa, 9
n T 1
B, = Bgaf 0y SO ’
2
B/ — B Cn
n—9g = Dol 0 = 9
all the others vanishing.
Hence
Vu? 3r a 24?
Y= — o I, (cos ) [;—;— a—g]
3Va? ¢, ar- 5 ar=3
= Ly cos0) | -5
3Va? € — 1 = gl
- _? oy 2 I” (COS 6) [ A3 - Tn—l:],
3VOL 8 an— 1 an+1 -
—— a%2 ,,42(0056)[ Mﬂ]. ... (67)

From this formula the solution for the case r = a {1 4+ Ean I, (cos )} can be
built up.

2. Spheroids.

I will now consider the solution of (3e), p. 494, in terms of co-ordinates, p, g,
defined on p. 477.

By p. 479, we may write
V="3"|AL(p) +BH (9L @)

and

—1 - d? a2 ‘
=P =P {(1 =)~ 1"*92)@{'- coe e (6a)

Hence
. dZ d = ca
(1= Y = (=) 5% = =% (" = o[ AL(p) + BE. ()L (@) - (69)
But, when 7 is not less than 4,

L (p) Toso (@) 1 (p) L (p)
Py =%, T T Y u, ()
by pp. 460, 469,

38 2
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Hence

(p* — @) AL (p) L.(9)
= A8 [Lass (P) L (@) — L (P) Lo (9)] + Ala [Ty (0) L (9) — L (p) L_y (9)):

The corresponding terms in a particular integral of (68) are, by p. 480,

s s (L@ + L (p) sy ()]

2 n 5[0 Tms (@) + Tuca (2) L (9)]

Hence the terms arising in a particular integral of (68) from the terms on the right
for which # is not less than 4, may be written

2 Wnsg[Loss (P) (@) + Ly (@) Lo (P) ]+ Busa [Hurs (p) T (9) + Ly (9) H. (p)13,
where

QIﬂ+2 2(2 + 1) [AﬂS ”+2 Lﬂ+2]

55,14-2 = m [Bng n+2 Zn+2]
The terms on the right of (68), when # is less than 4, are

(P — ¢ - {Ag+ Byp + [Arp + Bilg + [AyLy (p) + B.H, (p)]1,(g)
+ [AsL; (p) + BsH; (p)] 15 (9)}
= 24,1, (p)+2BsLs(p)—2[ Ao+ Byp]Ly () +2[A s (p)+ Bily(p) ]9 —2[ A1 p+B, 11, (q)
+ Ay [T, (9) I (9) = L (#) L (9)] 4 Ba {8 [Hy(p) Lo(9) — Ho (p) L (9)] — £ Lo ()}
+ A8 [ () Is (9) — L3 (p) L (9)]+ Bs {85 [H; (p) Is (9) — Hs (p) L (9)] — 15 - Li(9)}.

Thus, the series of terms we have already found to oceur in the particular integral,

of (68), continues regularly down to n = 2, while there are also found the irregular
terms

— AL (p) — 2T, ()
+ i"“ B\, (p) — %1 I, (P)} q

+] A, +<B + )10]1 (9)

+ i( 45> + 10] I (q
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Thus ¢ consists of these terms, together with the series

3 {0 [Tars () Tu(@) + L (9) Luso(@)] + Beso[Ear s (P) L (@) + H () Lo @) T3,

and the series

"3TICIL (p) + DHL (9)] T (9).

All the constants above are independent. But referring to p. 490, we see that the
conditions for finite and continuous velocity everywhere require that A, By, A, B;;
A, Ay, &e.; Cy, Dy, Cy, Cy, &e., should all vanish. Hence all legitimate expressions of
Y are included in

Y= C, + Dyg
| + L (9) [Byp + GoLy (p) + DoH, (p) + B,H, (p)]
+ I; (¢) [Bs + DsH; (p) + B:H; ()]
+ L, (9) [B.H, (p) + D.H, (p) + B:H, (p)]
+ &e,regularly . . . . . . . . . . . . . . . (89),

B, B, .
EQ, 4—2 respectively.

The first case to which I shall apply this formula is that in which an obstacle in
the shape of a spheroid is opposed to the flow of liquid, and, to begin with, I shall
suppose there is no slipping at the surface ; so that the boundary conditions are

writing B,, B; in place of

W _ o A
dp_o dg_o’

when p=p,, where p, is the parameter of the fixed surface.
These require, omitting the argument, p,,

D=0
Bypy 4+ Coly + D H, + 8,H, = 0 = B, 4 C,P; + D,Q, + B,Q;
B; + D;H; + B;H; = 0 = D;Q, + B,Q,
%41{2 + D4H4 + %GHG =0= 284an + D4Q3 + %er

Hence, three of the above constants are arbitrary, namely, we may give what
values we please to C,, B,, B;, and all the others will then be determinate. If we
give a finite value to B, or B; we get an infinite series which in each case is diver-
gent (see p. 508). Let us then first consider the solution given by %, = 0, By = 0.
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We have )
¥ = 1,(9) [CL; (p) + D,H, (p) + Bopl,

where
Copo + Dy Q) (po) + By = 0
Coly (po) + DH, (pg) + Bypy = 0.
Hence, since '

P —1 P +1 p
Hz(po): 04 log‘pz_lmé):

o Poqy Pyt 1
Ql (100) - _Zglogzgz__ 1 L

we get
: 241
Dy = _"];%J(Jgroo) ®
By = — 5775 Cs
where
Lipg =2t gl
Now the term which gives a finite velocity at infinity is C,I, (p) I, (q) = — Cyw®/4h2

Hence, if this velocity be V from right to left, C, = 2A?V, and

O‘2 1H2
W= 212V 12(9)[12@)—1’”1’2;@0; (f’)]. L. (ro).

From this result we find, by simple reductions, that the velocities U, W (p. 478),
perpendicular to the axis and parallel to it, are

U= v 1@ =21 =0
2L(p)) (P*— /(PP —1)

=V [l4pdy L p (@ =)
’"ZL(zoo){ 5 8, T Ty ZL(zoo)} c e (7)),

From (70), by the equation i = const., we get the forms of the stream surfaces, and
from this point of view, an integral which includes (70) has been given by Mr. HerMAN,
‘ Quarterly Journal of Mathematics,” 1889, No. 92. Taking OBERBECK’S values for the
velocities due to the steady motion of an ellipsoid through a viscous liquid (“ Crelle,
vol. 81), he finds as one surface on which the stream-lines relative to the ellipsoid lie,

¢ 02 (D\, ‘ _
U <1 T 5 i h> (@ENC+ N @ P (A.+ B.+ C) e_Iwy = constant,
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where
A — r’ dan
e T . (aﬂ + 7\)3 (1)2 + 7»)%02 + 7»)% ’

and (o 4 €)? is the semi-major axis of the confocal to the moving ellipsoid, which
passes through the point z, ¥, z. I have slightly changed his notation, making the
axis of z that along which the ellipsoid is moving.

But if the ellipsoid is one of revolution, so that & = b, then

SA — 18R — P —1 p+1
77,AE._}’7,B€—202__]L l,q 1

hC, = logp +~~i '"1%

” an- 1
b J‘ {(@@+2N) B +N) (@ + 0P log = hH,

in the notation of p. 477, where
& + e = h¥%pA

Hence, writing Mr. HERMAN’S integral
[H, + ¢C, — H, — ¢C, — e (A, + B, 4 C,)] zy = const.,

and substituting, we find the expression in brackets equal to

P ) — 20+ D [b1g 2T - 05 | - 55

and
xy = w° sin ¢ cos ¢,

= h?(p* — 1) (1 — ¢*) sin ¢ cos ¢,

¢ being the azimuthal angle about the axis.
That is to say, the surfaces

[2L (o) T (p) — (pd* + 1) Hy (p) — p] L (9) sin ¢ cos ¢ = const.,

are composed of stream-lines; and the motion being symmetrical about the axis,
¢ = const. is the other family of surfaces composed of stream-lines. ~This gives the
“expression (70) equated to a constant, as representing stream surfaces.

From the expression (70), we can obtain the expression (66), when B is infinite,
giving ¥ when the obstacle is a sphere. 'We must suppose / indefinitely small; then we
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find p= %, q = cos 0, where 6 is the angle between the asymptotes of the hyperbola g,
and is ultimately the vectorial angle of any point. But by (28), when A is small,

R

Hy (p)=—1%

H

P+ 1
po—1

a
1 2
p+uﬁ+4)ﬂdpﬁ=ﬂ}—§1

L(po) = Hy(po) + 4 log

and
— a? —
7'_3_7' 3a 7?
— BV i x| T
Y=WVsin® 0| = o — o
_ Vs f[3r o gﬂ
- 4 a P a |

which is the expression of p. 498, in which 8 is supposed infinite.

Three particular cases, besides the sphere, are worthy of notice.

(1.) The obstacle a paraboloid, of parameter 2f,.  Taking 21, 2m as the parameters
of the confocal paraboloids through any point, the solution is found by making % very
great in (70).

We find, without difficulty,

v l | <
l’b:mm[llog—;‘-{-l—lo] . . . . . . . (72)

(2) 4 planetary spheroid of eccentricity 1/,/2. Hence, by p: 478,

Py =1,
and (70) becomes

¥ = a*VIy(g) [Iz (p)+ iﬂ )

vV .
=" (@=1)(p—=9 . . . . .. .. (1)

where 20 is the greater axis.

(8) 4 curcular disc. Here py =0,

b= —2VL @)L (0)+ 2+ Ha(e] . . ()

o~

where o is the radius,
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Turning to (51) we find the velocities given by this formula are

j= 2 VA -g)
T (P = W (=) |

2V p+1 PG i
— 1 -
W = . [2 logp 1 —]—2‘72 AT (75)

vanishing at the edge.

As an example of the analysis to which the use of the expression leads, I will now
find the value of ¢ for a surface approximately spheroidal, say p = p,+ a.1. (¢),
where a, is a small quantity whose square will be neglected.

First suppose n an even number ; let us then assume

¥ =1I(q) [Bap + C2[2 (p) + DH, (p) + B.H, (p)]
+ L, (¢) [8,H; (p) + DH, (p) + B:H, (p)]
S S
+ L. (q) [B.H.—y (p) + DH, (p) + BusgHu o (p)]
+ Luy o (9) [Bus s Hu (p) + Dur o Hay g (p)1,

at which point we shall find that we may stop ; in fact, there are n + 8 constants in
the above expression, and n/2 + 1 terms, each of which yields two equations corre-
sponding to dys/dp = 0, dys/dg = 0 ; we are thus left with one constant arbitrary, which
is determined when we know the velocity at infinity. It is clear that all the constants
except By, C,, Dy are of the order of «,, and hence, at the surface, we may put p = p,
in the terms where they arise as coeflicients.

The condition W 0 when p = p, + a.l.(q) gives

dg
q [Bepo + Coly + DoHy + B,H,]
+ a.gL. (9) [B, + DoPy + DyQy]
+ P; (¢) [8.H, + DH, + B.H;]
+ Pu_y(9) [BHiy + DH, 4+ 9B, ,H,y o]
" + Pur1(9) [BuioHu+ Dy o Huyy] = 0

@ = 0 gives

L (9) [B, + C,P; + DyQ; 4 8,Q;]

+ auly (9) L(q) [Cz + D, o_l%%)q
+ I, (g) [B.Q: + DiQs + B4Q;]
+... .
4+ L(g) [B.Ques + DuQucy + By s Qusy]

+ Lo (@) [BiuseQuar + DisyQuii] = 0.
MDCCCXCL—A. 3T


http://rsta.royalsocietypublishing.org/

A

\

A

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

.
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

506 MR. R. A, SAMPSON ON STOKES’S CURRENT FUNCTION.

Now,

Sn Mt 1 it
L)L) = 3T (@) + 57 L) + 2 1o (g) -
by p. 460.
Hence the second series of equations requires

Bz + 02P1 + D2Q1 + %4Q3 =0,
%4Q1 + D%Qs + §B6Q5 =0,

SBn—an-—s + Du—zQu-—é -I" %nQn—] + agn - Os
‘SB%QN—3 + DnQu—l -+ %n+2Qn+1 + o (€n - 1) =0,
%u-;-an—] + D1LQH+1 + o 8# = 0,

where

_ dQ, (po)
a=* {02+D2—-—~0‘Zp0°].

Making use of the first of these, we see that the former series requires

Bypy + Gl + D,H, 4 8,H, = 0,
%4,H2 + D4H4 + %GHG = 0.

'SBﬂHft—:z + DnHﬂ + %7t+2Hn+2 =0,
QSn+2]:-1¢z + D75+2H'1+2 = 0,

Taking any pair of equations

%7'Q7'—3 + DrQr—-l + %7‘+2Qr+1 = O,
%rIIr—g + DrHr + %r+2Hr+g - O,

where 7 lies between 4 and n — 4 inclusive, we find

DV, =8U,=%,,,U,,, =, a constant, say,
where
U, = HrQr—3 - H7'—2Q7’—1>
V, = UU, s/ (L sQ ) — HoysQy).

In place of these, the last three give :—
Last pair,
%1L+2Un+2 = - 0‘871Hn+3,

DyyoViyy = a8, | H HusiVaro
w+oYugy — GO, /¢+2"’~U 0
w4
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Last but one,
BiyoUnsy = BU, + o (Gn - 1) H,,

D,V,=%8,U,—a(e, — 1) %—t—g—zﬂ .
749

Last but two,
%nUﬂ = iBn..gU‘n_z + aCan-z s

= B+ “Cn n—2Qs

HV,_
D/l—-QVﬂ 9 — B + Z?[ 1} =2 .

We have here two values for B,,,U,,,; reconciling them, we find
0= ,8 -+ aCan_g + a(en - 1)Hﬁ + O‘San+2,

B = — a(p — 1) H, (p,).

or,

With regard to the first pair of terms, we suppose C, arbitrary, and B,, D,
separated into two parts, of which the former are the same as when the spheroid
is perfect, while the latter are of the order «, and fall in regularly with the above.

Hence we get

¥ =1,(¢)[Bp + CL (p) + DH,(p)]
~ a(pt = VE(p) {Lo) [ + 52 + 72

+1, (q>[H (10)+H(p)+H(p)}+'

#1057+ 5]

—afl @[ T L () - L P B )|
i ﬂHﬂ—Q 0
+ I, (q)l_-— L—U'H*OL) H,_,(p)

T Hn nddn—9 87LH71+
+ <€” —1 Iﬁiﬁ%) &H = (Po)) H,,( ) 2 (100) Hn+2 (20)]

. BnH” 7w n 0
 Les ()| = T T, () 4 (3, D) 5, Taai) “ >> oo (p) |}

P

In this expression, B, C, D have the same values as the corresponding coefficients

in (70), and
— %n dQ (),
<C + D dap, : >
3T 2
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If n is odd we get a series exactly similar, except that the first terms are

— a(p® — 1) H. (py) {Is () [%3 + gi‘éﬂ + 5-@] + &e }

There is one exceptional case, viz., n =1

P =P+ 9.
‘We have
¥ = Ly (q) [Bp 4 CIL,(p) + DH, (p)]
+ ’Q?o((‘p“o; [H; (p) — Hy(po)]1 15 (9) 5
where

AQ _ PNy (pg’ +3)

D —
O+ D = - DL

I shall now consider those two other functions, which, as we saw on p. 501, are

d
solutions of D% = 0, and make i% = % = 0, when p = p,.

One of them consists of a series of terms of odd order only, and the other of terms
of even order only. ‘

Consider the latter; put Cy,= B;=0. Then we have the unlimited series of
equations

Byp, + D,H, + 8,H, = 0 =B, + D,Q; 4+ B,Q;
%4H2 + D4H4~ + SBeHG =0= %4(;;)1 + D4,Q3 + %GQ;'.;

whence, as on p. 506

D,)V,= BU, = »SBn.]. gUn +9
— B2U2.
And we find

¢=B2Ug{[U 4 (P>+H(p)]1 @)+ ...

-9 H n+g (2 Y
+ [ () + V(p) UM(;))} L. (9) + &c., ad mf} .. (76).

Similarly, the series consisting of terms of odd order is

= Bsug{[é + 5%@ + HET?")] I () + &e., ad mf} .. (764).
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Now, the maximum value of the term

Un Hn (po) Qn-—g (Po) - H"—2 (p()) Q"—l (p())

occurs when p = p,; and this maximum becomes very great when n is very great ;

for by p. 475, when = is great H, () = — 1 %f”_l (1 — £, and (HEINE, § 40)
Q)= A/TE (1= )
Hence : _
Hn (P) — 1 fo_"+3 (1 - SOQ)%

U, = " 3Va n—3) "t —al(n—2)t(n — 1)~

where & = p, — /(p? — 1), mod. £ being less than 1. Hence this expression
‘becomes infinite with 7 ; and no infinite series in which such a term is present can
represent a motion within the limits of our discussion.

We could have foreseen that these series would be inapplicable, for we have already
found one to which there is no objection, and it has been proved by HeELMHOL1Z
(¢ Wiss. Abh.,” vol. 1, XIL.) that there is only one slow motion which satisfies the
equations for a viscous liquid, and obeys definite boundary conditions.

3. Hyperboloids.

Let us now consider the motion which may take place within a hyperboloid of one
sheet ; say, of parameter g,
The conditions dyj/dp = di/dq = 0 are evidently satisfied by taking

¢ = Dyg + B;I; (q)

where
D, + B;P,(g) =0,
or
B.
=5 (4" — 3%")
and

By= —2Vi¥3(L—¢® . . . . . . . . (77)

That is to say, the stream surfaces are hyperboloids of the system confocal with the
boundary.
The velocities which (77) gives are

L V. (¢ - 9()2)2_7 1,192 j
U—_l—qg(pg——q‘“’)i' 1= |
.03 ) } X (77A)
W= " (w—%)Q g
1—=¢ p*—¢

where V is the velocity at the centre from right to left.
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In the particular case of a flat wall pierced by a circular hole, we have g, =0, and
2 1— ¢ j

U= —v_ PrVA—g
W= VA-2) |

i !
W=V )

(778)

both of which vanish at the edge.

4. Slipping Motions at the Boundary.

Approaching now as near as may be possible to a discussion of the solutions when
the liquid slips at the surface of the obstacle, we find, without difficult or very long
calculation, that if on p. 495 we put @, B, v, = p, ¢, ¢, and consequently u, v, = P, Q
of p. 478, while w = 0, we find, I say, « = b =0,

= - P o P
20_<i"2“.‘22)\/(209—1.1—g2){(1—92) (P = 155
29—y | 2p (PP —1) dipr
+ PP — ¢ dg P — ¢ dp} e e (78)

Now if T is the tangential stress per unit area at any point of the obstacle, whether
spheroid or hyperboloid, T = 2u¢, and a boundary condition being that this tangential
stress shall be proportional to the velocity of the liquid, at the surface of the obstacle,
we have

for spheroid (p,) T = 8Q, P =0, whenp = p,

for hyperboloid (¢,) T = B8P, Q = 0, when q = ¢,

where 8 is a constant, becoming very large when the slipping is very slight.
Now

¥ = Cy + Dyg + L, (9) [Bop + Gyl (p) + DH, (p) + B.H,(p)]
+ I3 (q) [Bs + D;H; (p) + B:H; (p)]
+ I, (¢9) [B,H, (p) + DH, (p) + BH, (p)]+ . - . (69)

and remembering

d
0790' IM (90) - Pn—l (CC)

& L@ __am-1 L)
@ 11, (x) - 1—2 ", (%)

we see that if P, and, therefore, dij/dq = 0, for definite values of p, we also have
Py/dg® = 0.
Hence the above conditions become, for spheroidal obstacle, p = p,
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dyr
Q= 0.

Py 2y b B el =AY

dp*  pd = @dp T pi—1 dp

when

P=Po; « « « v « « v o o . (79
for hyperboloid, ¢ = q, ,

Py pPP=1dY 200 Y _ B [P —a’d¥

d*  1—gldp* T pP—qtdg T p 1—g? dg -~

A A

(794)

From these equations we can detect at once a solution in a particular case, viz.,
the flux through a circular hole in a plane wall, when the result we have already
obtained on p. 509, viz.,, yy = — Va?/3 . ¢* (a being the radius of the hole, and V the
velocity at its centre) still applies. In fact, the tangential stress at any point of the
wall is zero. ‘

But it is obvious that it is out of the question to apply, in general, the direct method
of assuming (69) and substituting, in order to find functions which satisfy (79) and
(794), and it is also clear that the solution for the spheroid is not, as in the case of the
sphere, of like simplicity with the case when the slipping is zero. In one case I
have followed out the process of solution, viz., when the obstacle is a circular disc, and
the slipping slight. We then have p, = 0, and

W _pdy
Tay = g ag’

SOCIETY

OF

and assuming that the solution does not differ greatly from the case when there is no

slipping, I at first neglected, on the right, all terms except those entering in (70), p. 502.
This led to a set of equations for finding the coefficients

| 2V

"B

537U7 —_ §B5U5 — — 25;_4 . (%)2 .

%5U5_§B3U3= ""'5.%‘

A

2uaV
B

'S'B27L+IU27?,+I - %211—1 Uznr 1= —

(4n — 3) 2n — 2) <2n +4...2\2 2ua’V
2n — 1 2n — 3...3 '

SOCIETY

Now, when = is very great, the limit of

OF

Hence, when # is great,

' 2mrpa®V
§B2n+l U2n+l - %Zn—l UZn-—l = - ,8 -
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That is, the coefficients B become infinite when 7 is infinite, and the series which
the expression (69) would require us to use for i is divergent, showing that the
assumption that ¢ may be written in a series proceeding like (69) is, in this case, not
Jjustified.

It will be seen from the last section, and from p. 508, that an infinite series of the
form, satisfying common boundary conditions, frequently becomes divergent. This
would not always seem to show that there is no corresponding possible motion, but
rather that the mode of expression chosen is not permissible.

Now it is easy to see that there is no solution of D%y = 0, consisting of a finite
number of terms of (69) which obeys (79) or (794), the solution ¥ = ¢* excepted.
Hence it seems probable that a series of the form (69) is not appropriate for expressing
the motion of a viscous liquid, slipping at the surface of a spheroid or hyperboloid.*

Note. (Added, June, 1891.)

At the suggestion of the referees, I add a more detailed consideration of the motion
past a dise, and through a hole in a wall.

A circular disc, of radius «, is moved perpendicular to its plane with velocity V ;
the stream-lines relative to it are given by

by 2 ‘
¢:—2MWM@PAM+G%P+HAMQ’
or, writing p = 1,
a®V

== (= PA[(1 4+ p?) tan~tp — p].
The stresses at any point of the liquid are
P=—p+2pe; Q=—p+2uf; R=—p+2u9; S=0=T; U=2p,

and p being the mean of the pressures normal to any three mutually orthogonal
surfaces, I shall hereafter allude to it as the “mean pressure ” at the point.
Let us first find p.

IfQ = —2_ V, we have ™
P v [d dy
—_ X ;
dQ—;S(\dwdz— dm'>

dz

where y = Di.
Transforming to the elliptic coordinates p, g,
R IR ¢ _Lodx ]
— dQ = ) [1 — ¢*dp dg + 1—p*dg OZPJ

* See p. 515.
+ Basser, vol. 2, p. 262.


http://rsta.royalsocietypublishing.org/

VA\
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

Py

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. R.-A. SAMPSON ON STOKES'S CURRENT FUNCTION. 518
which is an exact differential by (3e¢) p. 494 ; and gives, in the case of any spheroid,

vV q

Q= e

AR ( po) p* -

or in the case of the disc, of radius «a, -

Q=4vv q )

P
and since there are no applied forces, the variable part of the mean pressure is -
4Vu g

| , P g
Again, by the formule, p. 496,

12 g dp b (PP — )

1 =1 du v g/ (1 -6,

_ Y Jl=¢ dv  w pv(pP 1)

) =g dg ' (PP—

. up v .
IT= v =177 V=g =)
a=0=0;

Vg 2= dp 7@(292—99)*

whence, in the case of the disc,

2V gL+ =29 _ 2V pq(d + ¢+ 2%

i PG =) ar P+ P+ 1)
2V % 2V g
I= o er = T W
g =2, 7 _ v, g
Y am (PP =) (PP —=1) o PP+
o= 2V, rg l—ﬁ_.%Y. v =g
Tour (P — )P —17 ar (4 ) w41

These all vanish on the surface of the disc (p = 0). Hence the total pressure on
the disc is got-by integrating the mean pressure over both sides of its surface. This
gives 16 Vpa, agreeing with the known value for any ellipsoid.*

I append tracings of the curves,const. = /a3, p/2u, e, f, g, ¢, with numerical
values calculated on the supposition that V/ma = 1. The first shows the stream-lines ;

* Bansnr, § 497,
MLCCCXCL—A, R
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the second, the mean pressure at any point; the third, fourth, and fifth, the departure
from this mean in directions respectively normal to the ellipsoids, to the hyperboloids,
and to planes through the axis; the last shows the tangential stress for these
particular directions of normal pressure.

With the exception of ¢, which has a maximum at the pomt on the axis distant one
radius from the disc, all increase if we approach the edge of the disc in particular
directions, and we can make this increase very large; but at the edge itself they
appear to be indeterminate, not infinite, all the surfaces of equal stress passing
through one and the same line; and there seems no ground to suppose that it is
impossible to impress a sufliciently great external pressure upon the whole liquid to
prevent the pressures becoming negative. But it suggests that the test of zero or
finite velocity at a sharp edge is not sufficient to ensure the motion being admissible.

Next, consider motion through a circular hole in a wall.

We have, for any hyperboloid,

ub*;(lg\:/b—"w (¢ — 394,°)

where V is the velocity at the centre.

Hence
Q=— 4V ! . P L (}5100.21;:1-_‘1‘)
h(l=q¢) p* — ¢ c1-

and the mean pressure is

=V
Tkl = g) [mn p+¥2+9]
and for a flat wall (¢, = 0)

v -1 p
P = [tan y+ o e (]o:la
where ¢ is the radius of the hole.

The difference between the pressures at infinity is

I = _ ApVm
’ il (1 — g )

Again, if F is the total flux per unit time through the aperture,

V'n'h
F:3(1 )(90*1)2 (ZQO+ 1)

Hence, @ being the radius of the aperture, so that @ = i /(1 — ¢.%)

(990 + 1) (1 - %y
F = 11,
12 (1 + gt
or, in the case of the plane wall,
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By applying the formule given at the beginning of this note

2Vi pg (L4 g2 —2p%) 2V P (1 + ¢ + 20%)

e= ot L L

¢ P @ -0 ¢ FHePE+D’
2Vi pi? 2V v

J= G e = a O+

_2ve o op? 2V, v ,
I= T - -D" " 4 AP+ 1)
Vi P l—g 2V, ¥y 1— g

af.(p‘l-;gg)'2 P=1"a O +¢&)? AY pr 17

Tracings of sections of these surfaces are given with numerical values on the sup-
position that V/a = 1, as also for p/2u. With the exception of the mean pressure,
the curves are in general character the same as for motion past a disc.

The surfaces of mean pressure are the same, except for the numerical values
attached to them, for all planetary spheroids and for all hyperboloidal boundaries.

Since the reading of this paper, I have found a proof* that the expansion of any
function of ¢ in a linear series of I(g)’s is convergent where ¢ is less than unity.
This throws more light on the problem of slipping motion past a disc, attacked in
Chapter VI, for it shows that if the expression for any function s is a divergent
series, then there is no corresponding finite motion.

The work there was conducted on the assumption that the motion, if existing, did
not differ greatly when the slipping was small from the case when there was none ;
and, therefore, we have not a rigorous proof that there is no such motion, though this
seems to make it highly probable. As it is not easy to see how there should be a
motion with slipping for one particular case of spheroid, viz., a sphere, and none for
another, viz., a disc, unless the former is a wholly exceptional case, it is interesting
to notice that the probability of it being exceptional is borne out by the analysis
(p. 511), for if we approach the case of the sphere, by putting p = »/h where A is
indefinitely small in the equation of condition (79), ¢ ultimately disappears from the
equation.

It must be remembered that the search for steady motions in viscous liquids
proceeds on an assumption, viz., that if the motion is started from rest, the limit of
the rate of change of velocity 1s zero at all points when the time is infinite ; therefore,
such motions must always be exceptional, and. again, the analysis bears us out in
expecting this, for the same thing will be noticed in the two solutions which I give
that SToKES pointed out in the case of the sphere—that the possibility of satisfying

dyr dopr

the boundary conditions i 0= ip depends on the presence of an irregular term in

the series (p. 501), namely, Bypl, (q) for spheroids, and Bl (¢) for hyperboloids.

* Tnserted in Chapter II.
3 U 2
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